• 西门子6ES7223-1PL22-0XA8现货包邮
  • 西门子6ES7223-1PL22-0XA8现货包邮
  • 西门子6ES7223-1PL22-0XA8现货包邮

产品描述

产品规格模块式包装说明全新品牌西门值+ 包装说明 全新 - 产品规格子

西门子6ES7223-1PL22-0XA8现货包邮

近20年来,随着科技进步特别是计算机技术的发展和社会环境因素的变化,市场竞争愈来愈激烈,顾客的要求愈来愈高。制造业的决策者都意识到,为了赢得竞争,就必须在产品功能、交货时间、质量、价格及服务等五个方面进行改进。
模块化设计技术就是一种可以增加产品功能,缩短交货时间的先进的产品设计方法。模块化设计技术是将产品中同一功能的单元,设计成具有不同用途或性能的、可以互换选用的模块,各功能模块之间的结合要素相同,可视用户需要组合成各种变形产品。企业采用模块化设计技术,可较大地丰富产品规格和品种系列,提高产品的性能、质量和对用户的响应能力,适应产品快速更新换代的要求。可以很好地解决产品品种、规格与设计制造周期之间的矛盾,并且交货、,使企业产品更具市场竞争力。


2 卧式车床模块化设计

根据市场调查、技术预测,我们充分考虑了卧式车床应用的范围以及产品的生命力,进行了车床品种规格的规划和模块的划分。将主轴箱、进给箱、架、尾架等不同功能的部件分成八组功能单元,即八个模块组。相同功能单元不再是单一部件,而是具有不同用途或性能的不同结构,但功能和结合要素相同的一系列可以互换的模块。例如主轴箱模块组有基本变速范围主轴箱、单速主轴箱等七种不同性能用途的主轴箱模块,可以进行互换;又如架模块组有转位架、立轴式转塔等六种不同用途和结构的架模块。程序控制模块是独立的增强功能的模块,作为提高机床自动化水平的预设模块,目的是增加产品的生命力。这八组模块进行合适的更换可以组合成几十种不同使用性能的车床,以适应市场的变化和用户的不同需要。

我们在卧式车床的模块化设计时遵循了以下几个原则:

(1)分离原则:将机床分离为能满足多种需要、性能合理的八组模块。卧式车床设计的模块具体划分如下:
①主轴箱:基本变速范围主轴箱、小变速范围主轴箱、大变速范围主轴箱、可调变速范围主轴箱、单速主轴箱、卧式双轴主轴箱、立式双轴主轴箱。
②进给机构:进给与车螺纹机构、无螺纹机构、单速进给机构、金刚石镗孔用桥座、双架用快速行程机构、快速行程机构。
③架:双架、形架、转位架、立轴式转塔、回轮式架。
④尾架:机械式尾架、气动尾架、液压尾架、钻孔用尾架、双轴尾架。
⑤夹紧装置:气动夹紧装置、液压夹紧装置、电磁夹紧装置。
⑥床身:普通床身、双架用床身。
⑦自动送料架
⑧程序控制器

    (2)统一原则:将模块统一为具有合理尺寸、符合我国规定的普通车床尺寸系列。例如为了适合各种主轴箱宽度尺寸不同的情况,将床身宽度尺寸按系列分为:普通床身、双架用床身。

(3)联接原则:设计各模块之间的接口要素同一,以确保模块间的装配精度和联接刚度,以及模块重复使用时的可靠性。

(4)适应原则:为了更好地发挥模块化构造的经济效果,模块化设计技术趋向于同模块群的跨类模块化构造。卧式车床、卧式铣床和立式钻床尤为适合跨类模块化,图2为相同模块群的跨类构造示意图。因此,为了能满足将模块任意组合成所需机床,设计时采用尽可能不详细区分模块的机床构造方法。


3 程序控制器设计


    我们在卧式车床的模块化设计中采用先进的可编程控制器取代继电器控制,以实现单机自动化。可编程控制器是微电子技术和微计算机技术的较新成果,具有可靠性高、抗干扰性强、编程灵活方便、对环境要求低、体积小、结构紧凑、便于安装等优点。本设计采用三菱公司生产的F1—60MR可编程控制器,分别对相应模块进行控制接口设计和程序设计。在模块拼装成机床时,将有关模块控制接口及其控制程序组装起来,形成卧式车床整体控制系统。

下面就立轴式转塔架模块为例介绍可编程控制器的控制设计。

(1)立轴式转塔架进给系统工作原理

立轴式转塔架的工作过程是架的顺序回转使完成各工位的加工。其进给系统是采用液压系统实现转塔架的快速进退、工作进给、架转位、架的抬起和锁紧。


(2)可编程控制器的控制原理及接口设计

控制采用手动和自动二种方式,启动自动循环后可自动实现工作过程。整个进给系统有前进和后退两个方向的位置控制和加速进退、工作进给快速退出等多种速度的控制。需要可编程控制器的输入点19个(对应X400—X506),输出点12个(对应Y430—Y533)。输入端分别接来自卧式车床操纵箱的按钮和床体行程开关,输出控制信号控制液压控制系统的各类电磁阀的动作,以实现立轴式转塔架的工作。

1 引言
通常机床主轴电动机制动时,采用的是能耗制动方式,使电动机AB相输入直流电源。
采用能耗制动方式使主轴电动机停止,主轴在低档位低速旋转时,大约需要0.5s,在高档位高速旋转时,大约需要2.5s。目前,采用的主轴电动机制动方法如图1所示,先断开KM1,再闭合开关KM2,从而断开三相交流电源,接通直流电源,延时2.5s,认定主轴电动机停止旋转,然后进行换或其它动作。
主轴以不同的速度旋转时,采用能耗制动方式使主轴停止所需要的时间不同,采用同样的能耗制动时间,延长无意义的加工辅助时间,降低了机床工作效率。另外,一旦开关KM2不能可靠闭合,或者直流电源保险断开不能正常提供直流电,则主轴电动机只能在摩擦力的作用下减速,制动时间需要很长,但延时2.5s后,机床数控系统仍然认定主轴电动机已经停止旋转,此时机床进行换或其它动作容易造成事故。
因此,我们对机床主轴制动控制方式进行了改进设计,判断主轴旋转状态,不采用延时2.5s,即认定主轴电动机停止旋转的控制方式,而是实时监控主轴旋转状态,当主轴旋转低于一定转速时,立即发出主轴停止完了信号。
 2 主轴转速监测方案
在电动机的同步传动轴上安装一块条形铁片,和电动机同步旋转,由接近开关对其,每转到两个脉冲信号,通过对脉冲信号的而得知其转速。脉冲信号有两种方案。
**方案:在一定周期Tp内读取脉冲信号的个数N,PLC是一种顺序控制器,它的程序是由前到后一步一步执行,每执行完一遍为一个扫描周期,然后从头开始循环执行。如程序有2000步,每步执行时间周期为30μs,则程序的扫描周期约60ms,扫描频率约16Hz,能够准确出的脉冲频率应低于8Hz,当转速的脉冲频率大于16Hz,即转速n≥480r/min时,PLC受其扫描频率的影响,不能准确出脉冲的个数,情况不好时,会出现高速时的脉冲个数很少,误判为电动机基本停止而进行下面动作,造成事故。此种方案只适用于主轴低速旋转状态的监测。
*二种方案:检测脉冲信号持续为“0”或“1”的时间T,当n<60r/min时,发出主轴停止完了信号。由于PLC程序执行过程的延时,数控系统收到主轴停止信号,并执行下面动作时,主轴已完全停止旋转,n=60r/min所对应脉冲信号持续为“0”或“1”的时间T为0.25s,因此我们把检测脉冲信号的计时器设定为0.25s。同样高速时也会出现脉冲测不准的情况,但不管情况多坏,在0.25s的时间内“0”或“1”至少变化一次,因此可以准确地判断主轴是否停止旋转。此方案可以适用于主轴高速或低速旋转时主轴制动状态的检测。在实际应用中,我们采用了此方案。
 3 PLC实现主轴能耗制动的控制方法
PLC设计程序中,X20.0为转速脉冲信号的输入,M05为主轴停止信号,Y50.0为主轴停止完了信号。
两个计时器TM1、TM2分别判断X20.0脉冲信号持续为“0”或“1”的时间是否达到设定的时间,只要有一个时间到达,即R100.1或R100.2变“1”,导致R100.3变“1”,此时M05为“1”,导致Y50.0输出“1”,则发出主轴制动完了信号,实现了主轴停止的准确判断。

202202231632210850864.jpg202202231632200382714.jpg


一、概述

系统采用PLC作为主控系统,印刷版辊﹑墨辊﹑送纸辊﹑电子凸轮皆为伺服传动,步进电机调整间隙,人机界面集中监控,现场总线采集传递信号,再结合高精度减速机﹑联轴器﹑编码器﹑滑轨丝杠﹑同步皮带等机构,实现高速运转下的各辊筒速度同步及相位同步,真空吸附电子凸轮送纸机构**快速精确送纸,系统的相位调整功能使调整变得简单易行。所有这些,较大地提高了生产速度﹑套印精度以及操作的简便性。

二、系统构成简介

系统由送纸部和四色印刷部组成,送纸部主要包括电子凸轮真空吸附送纸机

构和送纸辊。电子凸轮真空吸附送纸机构利用风机产生的负压使纸板紧密吸附在送纸平台上,两台电子凸轮伺服电机驱动送纸平台在送纸上下位间同步往复运动,配合送纸滚轮和送纸辊完成纸板依次传送。在滚轮摩擦系数和纸板压力稳定的基础上,送纸时机与一色印版的位置和生产速度相关,在一定速度下,当一色印版转到某一位置时开始送纸,转到另一位置时停止送纸,以保证印版能每次将图案准确印在纸板的相应位置上。不同规格的纸板,送/停纸时机也相应变更,操作人员仅需调整人机界面上的料号,系统会立即自动调整,保证印刷位置准确。两台电子凸轮电机的动作、速度与旋转角度要完全一致,才能保证电机和机构连续稳定运转,以及纸板平直送出。在这里,我们采用两轴同动直线补间功能来实现两轴实时同步。另外,凸轮电机还要满足长时间频繁往复正反向运转需要,要求系统选配高响应的伺服系统,并结合负载调整伺服参数,充分发挥伺服系统的高速高响应特性,尽量减少传动环节及各环节延迟,同时,还要充分考虑系统发热和回生保护问题,使电机工作在轻载状态。

纸板送出后进入四色印刷部,每一色部控制由印刷版辊﹑墨辊﹑托纸辊﹑牵纸辊和气缸等共同完成,各辊筒皆直接或间接通过伺服驱动,同时有步进电机和编码器调整辊筒间隙和位置。

印刷版辊的轴径通常很大,运行速度很快,而印刷套印精度要求较高,因此印刷版辊间微小的速度差在很短的时间内就会造成套印**差。设任一时段任意两印刷版辊的速度差为△V,系统速度环在△t时间内将速差调整过来,因传动机构延迟很小,设为0,则将△t时间内由速度差△V产生的偏差设为ε,可总结公式如下:

ε=∫0△t△Vdt

由此可见,负载间速度差△V越小,系统响应越快(即△t越短),则产生的套印偏差ε越小。这就要求一方面要提高机械精度,如安装同心度要好、负载惯量要均匀等;另外在系统选配时要充分考虑与负载匹配,在提供足够负载扭力的同时还要提供足够的响应能力。同时,调试工作也非常重要,要结合负载使系统发挥较优性能。对此,可利用伺服系统的自动检测功能先检测负载状况,再根据实际需要匹配参数(如提高响应或减小**调量等),进一步细调,直到符合条件为止。同时由于每个负载及其传动机构不尽相同,每台伺服的参数也会略有差异,应通过电气来补偿负载机械传动系数的差异。

系统利用PLC的运动控制功能对伺服系统进行实时控制,采用单独高速处理器,运算独立于CPU之外,结合伺服系统满足高精度及快速响应需求。另采集负载轴端编码器信号,对负载运行状况进行检测和校正,以传动误差影响,并有利于分析查找问题。

各辊筒间线速度要一致,避免纸板打滑,同时墨辊上墨才会均匀,无色块。另外,墨辊气缸的动作也很重要,开始送纸时,气缸带动墨辊依次下落,给印版着墨;停止送纸时,墨辊依次抬起,避免印版着墨太深。下落及抬起的时机由印版位置决定,以保证墨辊在印版上的着墨位置和着墨量,从而保证印刷质量。

由于纸板的规格型号很多,对于不同规格的纸板印刷,工艺和控制都要做出相应调整;同时,设备清洗﹑维护﹑挂版等工作经常进行,难免会造成人为误差,需要时常对印刷版辊相位进行调整,这些都在程序里实现,操作人员只需在人机界面上调整料号和校正值,*对设备做出任何改动,操作简便,较大的提高了工作效率和灵活性。

另外,在实践过程中,我们总结出一套模拟套准试验方法配合调试工作。通过PLC检测伺服反馈和编码器信号,对其进行统计分析,可计算出任意时刻各印刷版辊的相位差(脉冲值),再折算成长度(mm),便可测得机械套准精度,*上墨和纸板,节省了大量的材料,同时也缩短了调试的时间。

三、性能及特点:

1.由于采用伺服传动,其高速,高精度,高响应的特性使生产速度较大提高,传统设备通常较高生产速度为80张/分,本系统可将设备生产速度提高一倍,达到160张/分。

2.系统的闭环设计和快速响应能力使设备在高速生产下仍能保持较高的控制精度,套印偏差≤±0.25mm~0.4mm(视机械状况而定)。

3.电子凸轮真空吸附送纸机构改变传统后推式进纸方式,不会造成纸板弯曲甚至无法进纸,还可避免纸板定位不准,从而保证套印精度,在此基础上还较大提高了送纸速度。另外,电子凸轮的应用使转型生产非常简便,*调整任何设备机构。

4.系统自适应同步控制,只需改变送纸辊或任一印刷版辊的速度,其余辊筒自动跟进,始终保持线速度和相位同步,送纸频率和送/停纸时机也随之改变,保证套印精度和位置。

5.电子凸轮和配方功能使转型生产变得十分简单,*调整机械机构,只要在人机界面上改变生产料号,即可轻松实现。

6.设备每次运行前印刷版辊都要找到其初始相位,传统设备通常采用高精度编码器来定位,本系统可省去这项投入,并通过程序将这项工作简单化,操作人员只需按照人机界面上的提示进行操作即可。另外,由于挂版或安装维护等造成的初始相位偏移,也可在人机界面上随意调整,*停机或断电。

7.现场总线系统的应用使设备省掉了大量繁琐的安装配线工作和占用空间,**了信号传输的稳定、快速和准确,增强了系统的可维护性。

四、结束语

由于系统具有上述特点,尤其是其,高精度,高灵活性的优势,应用

在设备上后引起众多包装、印刷企业关注。但此类技术目前国内只有几家采用,但多为引进或合资合作技术,尚无自主知识产权,而且其高昂的价位也令许多企业,特别是中小企业望而却步。根据市场需求,我们开发出本系统并介绍给大家,真诚希望能对大家有所启发,促进此项技术在国内的推广,为更多企业创造更好的效益。




http://zhangqueena.b2b168.com

产品推荐