• 西门子模块6ES7212-1AB23-0XB8物优**
  • 西门子模块6ES7212-1AB23-0XB8物优**
  • 西门子模块6ES7212-1AB23-0XB8物优**

产品描述

产品规格模块式包装说明全新品牌西门子

西门子模块6ES7212-1AB23-0XB8物优**


plc 作为一种稳定可靠的控制器在工业控制系统得到了广泛的应用。但是由于中小型plc的人机接口功能不很完善,不能提供给用户一个友好的交互界面,因此妨碍了对现场运行过程的跟踪与监控。目**些通用的组态软件,以其功能强大、界面友好、开发简洁等优点在计算机监控领域已经得到了广泛的应用,但是一般价格比较昂贵。visualbasic6.0在开发可视化环境下的监控系统时具有其*特的优势,它本身提供的mscomm控件就是为应用程序提供串口通讯而设计的,它屏蔽了通讯过程中的底层操作,只需设置、监视mscomm控件的属性和事件即可完成对串行口的初始化和数据输入输出。西门子s7-200plc由于其体积小,可靠性高,通讯功能强大等特点,在工业控制领域得到广泛的应用。s7-200系列plc的通讯方式主要有三种:ppi方式、profibus-dp方式、freeport(自由口)方式。其中自由口方式是由用户自己定义通讯协议,具有与外围设备通讯方便、自由,易于计算机控制软件的开发等特点,因此使用自由口通讯方式实现plc与上位机通信的控制方案较多。

本文采用s7-200plc的自由口通讯协议,基于vb6.0开发了一种简单实用且易于功能扩展的监控界面,其中计算机作为上位机,通过mscomm控件建立与下位机plc的通讯,可以实现数字量和模拟量读写、存储及模拟量趋势曲线绘制。

2 通讯原理

在上位机中,通过vb6.0中的mscomm控件完成数据的发送与接收;在下位机中则是通过plc的指令完成数据的发送与接收的。

2.1通讯初始化设置

由于s7-200plc与计算机的自由口通讯是串行通讯,故通讯前需要通讯双方的串行端口初始化,使双方通讯参数保持一致。

(1)上位机初始化设置

上位机使用mscomm控件通过串行端口发送和接收数据,因此首先要对mscomm控件进行初始化设置,主要始化设置如下:

mport=1 `设定通讯端口号

mscomm1.portopen=true`通讯端口打开

mscomm1.settings=“9600,n,8,1”

mscomm1.bbbbbmode=1

settings:以字符串的形式设置并返回波特率、奇偶校验位、数据位和停止位。其中以字符n、o、e分别代表无校验、奇校验和偶校验。

bbbbbmode:设置从缓冲区读取数据的格式;0为字符串格式(text),1为二进制格式(binary)。

(2)下位机的初始化设置

为了使下位机与上位机的通讯参数保持一致,可通过对plc的自由端口控制寄存器smb30(端口0)或smb130(端口1)的设置来实现。由于本文中使用的是cpu222是端口0,因此对plc的通讯设置是通过设置smb30来完成的。smb30的设置主要包括奇偶校验位、数据位、波特率、协议选择等参数。本文smb30设置内容如下,奇偶校验为不校验、字符数据位为8位/字符、波特率为9600bit/s、协议选择为自由口协议,故smb30设置为9。由于本文是通过接收字符中断接收数据,通过定时中断发送数据,因此需要将两个中断初始化。

plc主要初始化设置:

movb9, smb30 //将自由口控制存储器设置9

movb 200, smb34 //定时中断时间设置(200ms)

atch int_0, 8 //接收字符中断

atch int_1, 10 //定时中断

eni //中断允许

2.2 通讯方式

(1) 上位机通讯方式

首先将上位机待发送的m个字节依次存储在数组s中,每次待接收的数据存储在变量r中。

发送信息时,数组s中**个元素s(0)存储**个待发送字节……最后一个元素s(m-1)存储最后一个待发送字节,发送方式为mscomm1.output=s。

接收方式为r=mscomm1.bbbbb。

由于plc中的信息是以byte的形式传输到计算机中,因此上位机需要对接收的数据进行数据处理。由于plc中模拟量传感器数据是以word的形式存储在aiw中,而plc在发送该数据时是按照word对应的两个byte发送,故计算机在后台计算中要将其对应的两个byte转换为word。为了在人机界面中表达数字量(qb,ib,mb)的各个状态,需要在计算机后台计算中把plc的各数字量的十进制转换为八位二进制,通过对八位二进制的每个位做0、1判断,利用vb6.0可使用多种方法把判断结果表达在界面中。

(2)下位机通讯方式

为了在计算机中实时显示plc运行状况及传感器的实时数据,就需要plc主动发送信息。为此,本文通过“定时中断”使plc周期地向计算机发送数据。具体方法是在定时中断事件里,使用plc自带的发送指令xmt发送数据,定时中断的时间设置(1ms~255ms)即为发送周期。

s7-200系列的plc接收指令有两种方法:**种方法是使用plc自带的rcv指令来接收计算机数据;*二种方法采用plc提供的“接收字符中断”方式,将smb2(自由口接收字符缓冲区)定义指针,使用指针接收数据。在这两种方法中,*二种方法更加灵活,因此在本文中,plc在接收信息时采用指针接收数据。即在plc接收数据时,每次接收m个字节,仅在**个字节进入smb2时定义指针,并将该字节写入指针所指向的变量存储字节;*二个字节进入smb2时,指针指向下一个变量存储字节,并把*二个字节写入……最后一个字节进入smb2时,指针指向下一个变量存储字节,把*m个字节写入。若数据接收完成,则清空用于计数的变量存储字节,等待下次接收数据,至此完成一次数据接收。本文中在接收字符中断里使用指针接收2个字节:

ld sm4.5 //变送器闲置时动作

lps

ab= vb99, 0 //vb99为0时

movd &vb100, ac1

//定义指针ac1,存储于vb100

lrd

movb smb2, *ac1

//指针指向自由口接收字符缓冲区

lrd

incd ac1//指针递增

lrd

incb vb99 //接收字节个数递增

lpp

ab= vb99, 2 //接收字节个数为2

movb 0, vb99 //计数清零,完成一次接收

3数据存储

vb6.0可将数据存储在多种数据库中(如access、excel等)。考虑到excel简单实用且应用广泛,通过设置excel的宏属性,就可将实时数据保存在创建的excel文件中,并可方便的查看历史数据。

本文通过vb6.0链接一个*的excel文件,在vb程序里定时器的触发事件将数据存储至excel文件,存储方法如下:k=k+1

xlsheet.cells(k,r)=v`数据v写入excel*r列,随着时间k的增加依次逐行存储。

为了建立vb6.0与*excel文件的链接,需要对链接的双方分别进行设置。首先建立并*一个excel文件,命名为“g”,存储路径为“d:\g”,通过设置该文件宏属性,可建立excel向vb6.0的链接。exel中的宏属性设置设置为:subauto_open()

open “ d:\g ” for output as #1 `写标志文件close #1

end subsub

auto_close()kill “ d:\g ” `删除标志文件end sub

在vb6.0向excel链接时,考虑到数据快速地写入excel,为避免误操作引起excel运行终止,本文在打开exel时设置excel不可见,当数据存储完毕后,设置excel可见。

(1) 打开exel(链接到*的exel文件)

set xlapp=createbbbbbb(“excel.application”)`创建excel应用类

xlapp.visible = false`

设置excel不可见

set xlbook=xlapp.workbooks.open(“d:\g.xls”) `打开excel工作簿

set xlsheet=xlbook.worksheets(1)`

打开excel工作表

xlsheet.activate

(2) 关闭exel

xlapp.visible = true `设置excel可见

set xlapp = nothing `释放excel对象

4运行实例

为了验证本设计在实际应用中的有效性,本文利用实验室现有设备,在cpu222的扩展模块em235中接入2个位移传感器,设计了一套简单实用的人机界面。在界面中,计算机实时的显示两个位移传感器的数据及其曲线图,并能将数据自动存储至*excel文件中;在界面中可以显示plc的数字量输入、输出状态及模拟量的实时变化曲线;通过“启动”、“停止”按钮可以直接控制plc的各输出点。

设置plc以200ms为周期每次发送9个字节,将传感器1的数据存入vw2(发送vb2和vb3),传感器2的数据存入vw4(发送vb4和vb5),i0.0~i0.7的状态字节ib0存入vb6,i1.0~i1.7的状态字节ib1存入vb7,q0.0~q0.7的状态字节qb0存入vb8,q1.0~q1.7的状态字节qb1存入vb9,m0.0~m0.7的状态位mb0存入vb10。

计算机每次发送2个字节,**个字节写入变量存储字节vb100中,并将vb100的数据赋值给qb0,进而实现点击“启动”/“停止”按钮控制q0.0~q0.7;*二个字节写入变量存储位vb101,该字节通过比较指令中的“字节等于”连接发送指令xmt,实现界面中点击“开始监控”(字节等于1)时plc开始发送数据,点击“停止监控”(字节等于0)时plc停止发送数据。

为了实现计算机直接控制plc的数字量输出,本设计在界面中使用8对“启动”/“停止”控制按钮,其中任何一个控制按钮的点击都是一次计算机向plc的数据写入。在qb0中该字节对应的8个位控制plc的8个数字量输出点(q0.0~q0.7),故这里通过定义一个数组q(0 to 7),数组中的8个元素分别对应qb0中的8个输出点,每次点击界面中控制按钮都是向对应元素的赋值,并将8个元素的赋值求和,求和的结果即为写入qb0的内容。其中每个“启动”按钮的赋值为对应元素的十进制数值,任何“停止”按钮的赋值都为0。

界面中的图表横坐标单位是“s”,纵坐标单位是“mm”,图表刷新周期为1秒,数据存储至excel文件的周期是200ms。开始监控后,使用两个量程为100mm的位移传感器,用手动方式移动传感器的检测部位,在数据存储过程中,excel文件不可见,停止数据存储后,自动弹出excel文件,a列和b列分别表示位移传感器1(黑色曲线)和位移传感器2(红色曲线)的历史数据。

近年来随着城市轨道交通自动化系统的快速发展,很多大型设备的监视和控制都选用微型plc进行改造。对某些控制点少而控制逻辑又较复杂的小型设备来说,可编过程控制器紧凑的设计、良好的扩展性、低廉的价格、强大的指令以及较高的可靠性和简便的维护近乎**的满足了小规模的控制要求。如750v直流开关柜的测控单元开关整流器的监视单元和400v开关柜的测控单元等均采用了plc可编程程控制器,给安装、运行、维护带来诸多的便利。以下给出的就是s7-200plc在北京轨道交通五号线直流牵引监控系统中的一个典型应用实例。

2 需求分析

2.1控制网络

城市轨道交通供电系统是自成体系的配电系统,包含有传统的交流供电系统和直流牵引供电系统两部分。为了实现整体系统的运行,必须实现电力系统的调度、运营和管理的自动化。变电站综合自动化系统是轨道交通供电自动化的基本组成,是实现电力监控系统功能的基本单元。轨道交通变电站内各层之间的信息可充分共享,并通过通信接口与外系统交换信息。设计一个快速、稳定、可靠的控制网络是轨道交通变电站自动化控制系统的基本要求之一,是实现轨道交通供电系统运行管理功能的前提。

2.2网络结构

整个上来讲,轨道交通变电站综合自动化系统划分为站级管理层,网络通信层,间隔层:

(1)站级管理层为设置在控制信号盘内的冗余热备的通信控制器、通用测控装置和一体化监视计算机。

(2)间隔层包括分散安装于供电一次设备中的各种微机保护测控单元、信息设备、智能测控单元以及采用硬接点接入的现场设备。设备包括400v及10kv交流保护测控单元、750v直流保护测控单元、变压器温控器、轨电位限制装置、制动能量吸收装置、杂散电流监控单元、ups直流屏、电度表、上网隔离开关、跟随所负荷开关等。

(3)网络通信层即为所内通信网络和接口设备,间隔单元通过所内通信网络层与站级管理层进行数据交换。

整个系统面向变电所通盘考虑,通过间隔单元与一次开关设备、ct/pt等设备接口,实现对变电所设备的控制、监视、测量、继电保护及数据管理、远程通信等综合自动化管理,以保证供电系统的运行。

一般来讲,轨道交通供电系统分为高压电源系统,直流牵引供电系统,动力、照明、信号电源三个系统。在轨道交通五号线供电系统中,作为轨道交通变电所自动化系统间隔层非常重要的组成部分,直流牵引供电系统直接给列车提供动力,其好坏直接影响整个地铁供电系统质量的高低。如果牵引供电系统出现问题,小则影响某个变电站、几个供电区间的输送电,大则引起整个牵引供电系统崩溃,给地铁列车的安全、运营造成影响。

轨道交通牵引供电系统是直接为地铁列车提供动力的系统,可以保地铁列车高速、安全、可靠、经济节电地运行。目前北京轨道交通五号线牵引供电的运行采用双机组双边供电方式,即每个牵引变电站2台牵引机组带2台总闸,并列向直流母线供电运行,直流母线下设4台分闸,即馈线开关(加上备用共5台),分别向上行、下行车辆进行主备供电,两个相邻的牵引变电站同时向站内同一馈电区间供电。

3 s7-200 plc具体实现功能

r1、r2为整流器装置,60、70为直流进线隔离开关,10、20、30、40和50为馈线断路器,61和71为进线断路器,65和75为负极断路器,14、24、34和44为旁路隔离开关,而16、26、36和46为上网隔离开关,813和824为越区隔离开关,除了旁路隔离开关和上网隔离开关之外,所有的保护和测控工作一般均由直流保护装置(如dpu96)进行监视和控制,而对于旁路隔离开关和上网隔离开关的监视和控制工作将是由s7-200plc来完成,对于每一个馈线开关来讲,均配置一个型号为“6es7 277-0aa2-0xa0”的s7-200plc,该plc主要有8个字节的输出和8个字节的输入,

4 s7-200plc与上位机通信过程

以北京轨道交通五号线为例,变电所自动化系统采用的是南瑞的rt21-sas系统,而750v直流开关柜测控单元s7-200plc与上位机rt21-sas系统的通信接口采用就是profibus-dp规约与南瑞的c101通信控制器profibus主站进行连接,c101通信控制器除了s7-200plc进行主从连接外,还提供另一路profibus-dp接口与750v直流开关柜直流保护测控单元dpu96,每个站设置2套协议及光电转换模块,实现profibus-dp信息的接入。此外,10kv的整流器监控单元与rt21-sas系统的通信接口方案也是经过profibus-dp规约与c101通信控制器实现互联。

s7-200plc作为dp从站,与c101通信控制器实现互联通信。c101通信控制器为南瑞*的遵循en50170标准的profibus-dp主站,它主要完成profibus协议转换成与总控通信的can2.0b协议。s7-200plc作为c101的从站,主要用于750v直流馈线柜的旁路隔离开关和上网隔离开关的监控、数据采集等功能。从通信流程上来讲,s7-200plc主要是通过em 277将s7-200 plc cpu作为dp从站连接到profibus-dp现场总线网络中,此外,s7-200plc的em 277还用来作为西门子step7 v5.3对s7-200 plc进行组态,主要是通过s7-200plc的mpi通讯口与装有西门子step7 v5.3的计算机来对step s7软件进行组态。为了使s7-200 plc的em 277profibus-dp模块可以与主站通讯,s7-200 plc与主站必须工作在相同的波特率下。当em 277profibus-dp模块用作mpi通讯时,其mpi主站必须使用dp模块的站址向s7-200发送组态信息,发送到em 277dp模块的mpi组态信息,将会被传送到s7-200 plc上,从而达到对s7-200 plc组态的目标。

整体上,所有的现场profibus-dp通信设备均使用profibus-dp规约接入南瑞*的c101通信控制器,c101通信控制器主要目的就是利用profibus-dp通信规约采集底层现场设备的数据,并通过双can现场总线规约送往南瑞的pscada总控系统c302,另外,c101还将接受c302的各种控制、查询命令,对底层profibus-dp现场设备进行实时监控,从而满足了北京地铁五号线的750v直流测控的实时数据采集、监控、继电保护等各种功能。

202202221739072455394.jpg202202221739069270614.jpg202202221739069218374.jpg


引言

较近几年来,随着国家宏观经济政策的调整,煤炭作为焦化厂较主要的原材料,其价格一直居高不下。同时由于电煤供应日趋市场化、多元化,造成煤质波动幅度增大,煤种杂、入炉煤质控制难度加大,使发电厂锅炉燃煤偏离设计煤种,锅炉稳定燃烧受到破坏,引发的设备缺陷明显增多,严重影响了锅炉安全经济稳定运行。火力发电行业的煤炭逐步全面推向市场,价格也随之开放,煤炭的费用在火力发电厂的成本已占70-80%的份额。因此,对煤炭的管理,已也引起火力发电的高度重视。因此,煤的经济性成了国内各燃煤企业重点考核指标。

为了考评燃煤经济性,对入厂煤进行采样后以质论价几乎成了所有厂家的较常用的控制措施。从80年代起,入炉煤采制样设备得到了高速发展;进入90年代,入场煤采制样设备(汽车入场煤,火车入场煤)从无到有,从不完善正走向定型和**。工业自动化技术在入场煤采制样设备的广泛运用,较大地把工人从繁杂的体力劳动和不安全的工作环境中解放出来,显著地改善了工人的工作环境和提高了工人的工作效率。

2系统概念设计

现代焦化厂往往由多个供应商供应全厂的各种用煤,供应商多数采用汽车进煤。精确的确定煤的发热量、水份、灰份和其他杂质尤其重要,因为即使是很小的差别也有可能在一段时间内造成很大的损失。同时,采样机也是煤矿企业用于商品煤采样的机械,要求从煤流中,火车,汽车,船上以及煤堆上采取煤样,然后加以分析,以确定煤的各种特性,用此分析确定合同价格,并根据要求将采样机进行了运动动作分析,对其进行了整机的结构设计。在设计采样时,不但注意了如何使物料连续通过采样设备,注意了如何保持水分不损失,并且还注意了如何避免粉尘的散失,在设计采样装置时要充分考虑到以上因素。

本文介绍的系统的采制样过程全自动化,能自动完成汽车定位、随机选择取样点,自动样本采集、缩分、制样和集样。根据有关汽车采样的现场条件、技术要求,并参照国家gb475-1996《商品煤样采取方法》及gb474-1996《煤样的制备方法》,制订汽车采样设计方案介绍如下:

2.1工艺流程

(1) 汽运煤场采制样过程可以分为:汽车自动定位--随机选择取样点-采制样-在线分析-集样。

(2)入场煤采制样设备的工艺流程通常是:自动取样--破碎--缩分留样--余煤处理。

当运煤车辆进入取样区域后,汽车定位系统对车辆所有位置进行探测,得到汽车车厢在取样区域的平面坐标参数,并传递给主控计算机。主控计算机根据车厢参数,自动在车厢区域内生成数个随机取样点。主控计算机控制机械取样装置在*的取样点取样,并控制制样设备自动完成煤样的粉碎、缩分和集样,在线灰分分析,随机自动装罐。汽车自动化采样机是对汽车运煤进行采样、制样的机电一体化设备,该装置由plc控制,准确定位,具有结构紧凑,设计新颖,性能可靠,操作简便等特点。其工作原理:汽车机械化采样机安装于运煤车经过的路旁,采样器由大车行走部分、小车行走部分、采样器部分等组成,大、小行车携带采样器样轨道纵向及横向运动,采样部分实现采样器上下运动,从而实现任意点、任意位置、任意量采样。可与煤质分析仪相连,实现煤质控制。此工艺流程对于火车采制样设备基本没有问题。

2.2工艺瓶颈

对于汽车入场煤采制样设备,在缩分留样环节存在有瓶颈,制约了汽车采样的发展;目前的采制样设备主要是靠操作人员判断汽车煤属于哪一个煤矿,然后选择留样的集样瓶。因此,就存在以下问题:

(1)选择集样瓶时,操作人员容易误操作,煤样的真实性不能得到保证。

(2) 集样瓶更换频繁,增加了工作人员的劳动量。

(3)汽车采样机的缩分留样能力有限(集样瓶工位数一般为6或8个),缩分留样的煤量(缩分比)大或汽车运煤量大时,致使集样瓶更换频繁,增加操作人员的工作量;缩分留样的煤量(缩分比)小时,不易反映单车煤的质量,真实性差。

(4)采制样设备只能采制出煤样,不能及时的反馈出煤样的质量(化验结果滞后),在“扣吨”问题上焦化厂与煤矿易发生扯皮;且增加了化学分析的工作量。

(5)焦化厂要求采制样设备与信息管理系统数据实时共享,在线实时监控,传统的工作方式很难做到。

2.3概念设计

为解决以上问题,我们根据多方考察和研究,依据以下原则进行设计:

(1)实用性:以解决现实问题为主,坚持为业主决策服务,又为经营管理服务,为生产建设服务。

(2)先进性:采用成熟的技术,兼顾未来的发展趋势,及量力而行,又适当**前,留有发展余地。

(3)可扩展性:系统便于扩展,以保护前期投资的有效性和后续投资的连续性。经济性:以节约成本为基本出发点,建立一个运行可靠、满足公司实际需求的采制样操作系统。

(4)易用性:系统操作简便、直观,以利于各个层次的人员使用。

(5) 可靠性:确保系统可靠运行,在关键部分应有安全和容错措施。

(6)可管理性:系统从设计、器件、设备等的选型都必须考虑到系统的可管理性和可维护性。

(7)开放性:采用符合国际标准的产品,保证系统具有开放性特点。

(8)实时性:数据实时在线监察,实时现场工况监控,数据库共享,分析分权限浏览。根据以上设计原则,并综合考虑煤场的工作模式后,在缩分留样环节前增加了灰水分析仪(能够测量灰分、水分、发热量)。

这种灰水分析仪与采制样设备相结合的工作方式既解决了传统工作方式不易解决的问题,又能快速地将入场煤的灰分、水分、发热量分析出来,减少了焦化厂煤质分析人员的工作量,提高了工作效率。

3系统组成

灰水分析仪与采制样设备相结合的采样机已成功地在河南某焦化厂投运。此系统完成一个采样周期共计136秒,其中从汽车车厢内取样时间为36秒,在线分析时间为100秒。

现场检测仪表对生产中各个参数自动、连续地进行检测,同时将信号反馈给现场plc和上位机,并在上位机显示器上显示出来;plc和上位机比较程序中设定的工艺参数,自动地调节某台设备的工况(启动、停止或调速)及存储煤质数据,从而自动满足生产过程需要。

3.1系统构成

(1)上位机。本系统采用pii的研华工控机,捷瑞公司的rs232转rs322/485工业通讯卡,数据库采用与焦化厂信息管理系统相一致数据库visual foxpro6.0,采用视频捕捉卡,图像分割器。闭路监控系统。

(2)可编程控制器(plc)。采用西门子公司的plc系列cpu224为控制核心,另有两块i/o模块,一块输出模块,一块8输入的模拟量转换模块,用于转换在线分析仪到的数据,internet通讯模块。各种开关量及模拟量输入到plc后,由上位机发出执行指令,plc经过运算后,将其运算输出到电机、电动滚筒、电动推杆等执行机构。

(3)上位机与plc通信:解决此问题,我们采用了北京亚控科技发展有限公司的组态王6.0作为组态软件,通过plc编程口与上位机通信。组态王6.0是运行于microsoft bbbbbbs nt / xp中文平台的全中文界面的组态软件,采用了多线程、com组件等新技术,能够实现适时多任务,具有开放的程序接口,可以自由地存取数据,且与各种关系数据库能够完整连接。

(4)汽车刷卡机。本刷卡机采用了与汽车衡相同型号的刷卡机lk480,用于自动识别不同煤矿的煤炭和车号,以保证煤质分析结果与对应煤车的一致性,便于焦化厂管理。

(5)灰水分析仪。此分析仪在0.5分钟以上能将灰分、水分、发热量分析出来,且其精度误差小于0.5%,我们综合考虑后采用了清华大学研制的hsfx-2000型灰水分析仪。

3.2运行方式

本系统的操作完全由上位机完成,操作人员运用鼠标点击要操作的对象,上位机通过组态王6.0将指令传递给plc,plc经过运算后决定要进行的工作。系统设置了两种工作方式:手动运行,自动运行。

(1)手动运行:操作人员分别点击对应的设备,即完成设备的启停、分析仪的设置等,此工作方式各设备间无连锁,主要是调试和维修时使用。

(2)自动运行:此方式是正常工作的运行方式。设备启动完成后,当需要采样时,操作人员只需点击“采样”按钮,采样机就自动读取汽车ic卡的信息,产生随机采样点,煤样破碎后经过自动分析,上位机自动将分析结果与对应的ic卡信息存入数据库,供焦化厂信息管理系统调用。煤样合格时,集样瓶内不留煤样;煤样不合格时,系统自动缩分留样,以供焦化厂进一步化验和检测。

3.3系统功能

系统具体功能和特点有:系统根据汽车司机的ic卡能够自动识别车辆的来源,并将卡的数据与煤质参数对应地存放在一起;在采样区域内自动产生随机采样点,并自动完成采样;对煤样自动进行灰水在线分析;根据煤质参数的结果自动决定是否留样;将每个煤样的煤质参数转换成焦化厂信息管理系统所需的数据库格式文件;系统提供了详实的采样纪录供操作人员查询和打印;系统具有多种连锁保护逻辑;若系统出现故障时,自动打印出故障说明,并自动停车等待故障解除;当操作人员误操作时,系统将弹出丰富的连锁保护界面供操作人员参考;全部系统动作可根据plc指令,按设置的程序自动完成,依赖plc实现检测、程控、报警、指示、联锁及解锁等功能,并实时检测来自设备的各种位置,控制系统包括供电、保护、控制及控制柜(可选用工控机或触摸屏,能够实时生动地显示设备运行状况及实现故障报警,并实现自动与手动之间的操作切换),出现问题,发出报警信号,整个系统由上而下地程序关机,以防设备及联带事故的发生;螺旋采样头垂直安装在三维移动的载体上,升降对位灵活,可实现表层弃料,任意的深度断面取样,操作简便,符合国家采样标准。该采样头螺旋杆底部,装有合金头,可破碎或拨开大块物料及其它异物,以保证取样的顺利进行及安全性,尤其适用于北方冬季煤层结冰状况下的采样。采样头直径按煤样含量**过5%,按较大粒度的2.5-3倍要求设计;性能优良的环锤式破碎机,其锤头可换,出料粒度可调节,对不易破碎异物有排出处理机构。破碎出料粒度不大于6mm的不低于95%,保证来煤水份达20%时不堵煤;旋转式缩分器,缩分头的动作由plc设定,该缩分器设计精巧,分样斗采用不锈钢材制作,驱动功率小、故障率低。其缩分可调,而且精度高、外形尺寸小;由于在次级制样系统中采用了喂料皮带输送机,使物料在运动中均匀地进入下一级设备,保证了破碎,环节从容地进行,有效避免了因喂料不均匀造成的堵料故障。避免水份散失及样品的污染。喂料机采用全密封处理,避免人为因素干扰。为提高采制样设备的过程管理水平,为适应用户对计算机网络管理的需求,自动化采制样装置可选用了计算机监控管理系统;工控机与plc实现双向通讯,可通过工控机输出设备程序开启指令,并可根据需要通过工控机直接干预或修改采制样程序及有关参数。工控机与皮带秤称重仪表通过rs-232/485接口电路实现数据通讯,并接收各终端元件的开关量信号,通过工控机屏幕上“动态工艺流程图”软件监测跟踪现场工艺状况,并实现对各类数据的监测、整理及输出打印;该系统可作为一个网络站点,与上位机通讯,实现用户的局域网络管理。采样系统可作为一个子系统或一个网络结点,纳入到整个工厂局域网中,plc与计算机联网后,再使用相应的编程软件(如梯形图或流程图)及其它高级语言编程,比较方便;可简化系统布线、维修,并提高工作的可靠性;可对现场智能装置进行管理,充分发挥这些装置的效益,推进生产自动化、智能化;一次胶带输样机:一次喂料机为全密封结构,料门开度可方便的调整,可将子样均匀地输入破碎机;破碎机:破碎机为环锤式破碎机,其锤头可更换,出料细度可调节,对不易破碎异物有排出处理机构。破碎出料细度可达6mm(不少于95%);二次胶带输样机:理论上破碎机的输出是不均衡的,因而直接对其输出的子样进行缩分,不可能保证标准要求的缩分精密度,必须配置二次胶带输样机;由于其转速可无级调整,且又有可调闸门,故能严格做到子样均匀流出,做到合理缩分;缩分器:为直线式摆动缩分机构,维护量小、外形尺寸小,缩分头的动作由电子定时器设定,缩分比可调,而且精度高、范围大,结构设计合理,煤样收集管及缩分头采用不锈钢制造,不会产生堵料;自动换桶机(电动推杆驱动):有“园盘自动换桶”和“环链式自动换桶”供用户选择,所配样桶(取样器)密封性强,使用方便;余煤回收机:采用斗式提升机(电机驱动),出料方式有二种:分散式:配小料斗可摆动溜槽(电动推杆驱动),使余煤回至下一汽车车厢内;集中式:配大料仓(5t),使余煤集中储存,每班一次,放入回煤车;机架及操作室:钢结构,包括机架、导轨、维护平台及顶棚等,其中部分制样设备(如破碎输样、缩分及换桶机)可按用户要求密封在单元室内(二次制样单元)。对于采用双头横移式采样车,实行自动控制时,将省去上部操纵室,将控制台设在地面工作间内;为保系统可靠、精确运行,本系统的构成设备均设置检测元件,可编程控制器定时检测各设备的运行状态,当发现不正常状况时,plc可自动采取补救措施,报警无效时,plc自动顺序停机;现场的闭路监控系统带有硬盘存储系统,调动值班人员可随时观察现场取样工作,还可查询历史工况。

4 研发评估

采用带煤质在线分析的采制样机有以下优缺点。

4.1系统优点

从采制样到化验分析,完全是自动完成,排除了人为干扰因素,保了样品的真实性。正常工作情况下,从采制样到分析煤质结果只需一个工作人员,节省了劳动力。采集的煤样不必经过焦化厂化验室化学分析,其分析数据自动存入焦化厂信息管理系统的数据库,使数据在一定权限内共享,方便管理、查询和打印,减少了焦化厂二次制样和化学分析,提高了工作效率。采样机使用刷卡制,避免了漏采的可能性,便于焦化厂对车辆的管理。采样机采用plc工控机共同控制的方式,维修量小,可靠性高。煤样分析数据自动存入信息管理系统的数据库,方便焦化厂其他工作人员的查询,提高了信息的快速性。采用plc控制,运用成熟的自动控制技术,使采样机的采样头能在*的三维空间内任意一点采样,自动完成旋转,下降,采样,上升,回位,卸样,破碎,缩分,分矿点收集子样、弃样等工作。该机器适应国内各种运媒或散状矿石的车型。该机的采样头采用安阳鑫达自控科技有限公司的**产品,具有良好的水份适应性,公司自行研制的防止破碎机内腔粘煤和堵塞装置(已申请专利)应用于制样系统的破碎机,对提高制样系统的水份适应性起到了关键作用目前国外同类产品的水份适应性在12%左右,国内同类产品的水份适应性在10%左右,而我公司产品的水份适应性达到16%。

4.2系统缺点

目前国内的灰水在线分析仪发展还不十分完善,还主要依靠国外进口,因此造价较高,一次性投资大。由于灰水分析仪需要煤质的静态和动态的标定,且此工作较繁琐,因此调试标定工作需反复进行。

5结束语

原煤自动采制样装置是针对燃煤焦化厂对控制入厂煤的质量而研发的产品,采制样装置通过精心设计,具有结构简单、性能可靠、采样精度高、对煤中的难碎异物具有很强的适应能力等特点。采样系统的设计、制造完全符合有关国家标准和国际标准,可保证采样数据准确性,满足商业结算或正平衡计算发电煤耗的要求。该装置主要用于焦化厂、燃煤电厂及类似以煤作燃料的大型企业,也可用于冶金企业矿粉类采样。采用的自动化设备是提高我们工作效率的必由之路,也是社会发展的必然趋势。随着我国经济的发展,灰水分析仪的完善,计算机控制和灰水分析仪与自动化采制样设备的结合将是采制样设备的发展方向。




http://zhangqueena.b2b168.com

产品推荐