西门子模块6ES7312-5BF04-0AB0功能介绍
  • 西门子模块6ES7312-5BF04-0AB0功能介绍
  • 西门子模块6ES7312-5BF04-0AB0功能介绍
  • 西门子模块6ES7312-5BF04-0AB0功能介绍

产品描述

产品规格模块式包装说明全新

西门子模块6ES7312-5BF04-0AB0功能介绍


1设备的构成及基本工作原理

1.1设备的构成

河东水厂供水泵房采用一台变频器(660V500KW),控制的变频电机是(10KV450KW),一台可编程控制器及一些辅助电气控制元件,和现场的六台(10KV450KW)水泵机组、出厂压力传感器一起组成一个完整的闭环自动控制系统。变频器采用ABB公司生产的ACS600型变频器,带有DTC直接转矩控制,静态速度控制精度为标称速度的0.1%到0.5%,它还具有多种保护功能,控制盘上可以同时显示4行功能信息,每行20个字符,有四种快速编程语言可供选择,ACS600内部建立的应用宏意味着你只需按键就可以选择相应的宏,带有文字显示的控制盘使你不必查书中的代码就可进行快速编程,所有的参数被分成逻辑组,操作方便。PLC用的是THYSSEN公司产品,由于考虑到今后的发展我们采用的是模台块式结构,这样的好处是配置灵活,装配方便,便于扩展和维修。

1.2工作原理:

传感器,出厂水压通过变送器输出4~20mA信号,此信号由PLC采样并与压力设定信号比较,求出其偏差。PLC控制程序根据偏差的大小再经PID运算,后通过模拟输出口,输出一个控制电流4~20mA信号,此控制信号改变了变频调速器的输出频率,从而改变了水泵电机的转速。减少压力偏差E=PS(设定值)—PC(出厂压力),当压力偏差E为正值并持续时间T>6秒,同时变频调速器的输出频率FC=50HZ持续时间T>5秒时,PLC进行定速泵的运行时间,按时间少的顺序启动定速泵,相反E为负值持续时间T>6秒、FC达到设定值持续时间T>5秒时,按运行时间多的顺序停止定速泵运行,经反复调节终使管网出口压力与设定值保持一致,压力偏差E=0,实现了恒压变量自动供水。

另外,可以通过中控室计算机对泵房的工作情况进行监控,把配套恒压供水设备的压力信号、水厂供水的流量信号和水泵工作的电流、电压、功率信号,通过数据转换传送到计算机内,PLC之间采用光缆通讯,在计算机上可画出各种参数的控制曲线和数据统计报表,并将当前数据存储起来,留作打印或以后查询之用,从而也提高了水厂的自动化管理水平。

2PLC控制变频恒压自动供水设备节电效果分析

在供水行业中,电能是在企业成本管理中有挖掘潜力的一项,茂名市河东水厂多年来始终把节能降耗工作放在,并把耗户供水泵房作为来抓,根据我厂的工艺流程,工程技术人员不段的采用新技术进行积的探索。在所有的供水泵房系统操作中,管网压力是由水泵通过电动机的拖动产生的。

根据流量Q与流量阻力h按阻力定律变化,

即:h=R×Q2(1)

水泵的功率N与水泵的扬程和流量成正比,

即:N=H×Q×r/102(千瓦)(2)

式中:r-水的重度(公斤/立方米)H-水泵的扬程(米)

Q-水泵的流量(立方米/时)

从(2)水泵的H—Q曲线与(1)管网的阻力曲线相交,得出特性曲线图2可见,若水泵额定转速为n1,当出口阀门全开时,管道阻力为R1,这时的流量为Q1、扬程为H1,水泵的工作在K1点效率,此时水泵功率N是Q1和H1的乘积与矩形H1-K1-Q1-O的面积成正比,如:当关小了

水泵出口阀门的开度,而当流量减少为Q2时(如效率50%),系统由原来的

工况点K1变到新的工况点K2,这时管道的阻力增加为R2,扬程H1升高到H2,原矩形面积变为矩形H2-K2-Q2-O面积,两个矩形的面积相差不大,说明通过调整阀门开度来改变流量,水泵的功耗变化不大。换句话说,通过开关阀门进行节流调节,并不能使功耗有效地减少。

那么,在供水系统中,通过什么途径能达到节能目的呢?我们知道,通常供水系统运行中,随着用水量的变化,相应有供水量的变化,从流量Q1减少到Q2,我们只需采用变频调速器改变交流电的频率,电动机的转速就按比例变动,电动机的转速n与电源频率f的关系如下式所示:

n=60×f×(1-S)/P

式中:P-对数;S-转差数。

从n1变为n2,流量由Q1减少到Q2时,管网阻力特性曲线R1维持不变,水泵由工况点K1变到新的工况点K3点,扬程H1大幅度下降H3,矩形H1-K1-Q1-O面积减少为矩形H3-K3-Q3-O的面积,两个矩形面积相差许多,节省的功率损耗N与面积H3-K3-Q3-O成正比,水泵轴功率与其转速的三次方成正比,即P2=P1(n1/n2)3,水泵功率N显著下降。ACS600变频器DTC提供的转矩控制,当电动机的转速下降时,DTC控制电机转矩平稳的降低,电流明显降低,其功耗大幅度减少。所以,在供水系统中采用变频调速,可以在流量变化运行时,节约电能,多年来的运行,我们研究发现在流量变化较大时,其节能效果十分可观。从水泵的特性曲线可以得知,改变水泵转数n可以有效的改变水泵的功耗。有一种液力偶合调速器也可以有效的调节水泵的转数,其过程控制原理为液力偶合调速器通过调节偶合介质来改变输出速度,当水泵由n1转为n2得知水泵的功耗大幅降低,但电机的转数n1并没有变,电机同样是在额定功率运转,虽然实现了自动恒压供水,但节能效果并没有明显体现出来。

    3 技术性能

PLC控制变频调速实现全自动恒压供水是调节供水的一项新技术,已经在供水行业中得到了广泛的应用,茂名市河东水厂全自动恒压供水系统,运行六年来,技术性能稳定,效果较好,其中:

1)设备的利用率均衡,茂名市河东水厂供水泵房,在运行过程中定速泵的启动是通过计算机检测运行时间进行启动,这样就避免了设备利用不均衡的现象。

2)保护功能完善,当水泵、控制系统、变频器发生故障时,在上位机都会发出声光报警信号,并记录、打印。

3)当个别定速泵发生故障不能起动时,系统也不会停止供水,在系统发出报警的同时,会按时间选择起动另一台定速泵,保供水。

4)控制系统,在上位机采用两种控制方式:一种是PLC控制,即按编程控制,二种是VDU控制,就是在计算机上进行手动调节。

5)有完善的管网保护系统,PLC通过模拟量输入信号的方法出实际压力值,然后根据所设定压力上/下限值进行管网压/欠压的故障判断,并完成相应的系统故障报警。而且,当主管线爆裂,泵机出口压力突然降低至3bar时,系统会停止供水。这就有利于实现对管网系统的良好保护,进一步提高供水系统设备使用寿命。

6)系统的缺点是,系统选择一台变频泵,定速泵的流量、扬程相同,在压力设置不当时,会产生控制盲区。即:系统供水压力达不到设定压力,起动一台定速泵又压力偏高,从而造成定速泵频繁起动。

4 小结

1)PLC自动控制供水设备是在继电器控制供水设备的基础上,利用PLC取代通用继电器、定时器控制的,可编程控制器的特点是功能强、操作灵活、使用方便、抗干扰能力强、性高、体积小、能耗低,适合在工业环境下应用。

2)目前变频调速器已成为恒压供水设备的主体,它不仅可以取代传统的高位水箱、水塔等供水方式,而且也水质的二次污染,具有节省能源、自动化程度高、供水操作方便、提高经济效益等优点。

3)变频器在供水上的应用,能够减少管网压力的波动,使管网压力趋于平稳,PLC参与控制,使全自动恒压供水系统加智能化,加完善,性高,稳定性好,响应快,从而降低员工的劳动强度。茂名市自来水公司河东水厂全自动恒压供水系统的应用,不仅产生的经济效益,也促进了企业的技术进步。


一、简述

多年来,可编程控制器(以下简称PLC)从其产生到现在,实现了接线逻辑到存储逻辑的飞跃;其功能从弱到强,实现了逻辑控制到数字控制的进步;其应用领域从小到大,实现了单体设备简单控制到胜任运动控制、过程控制及集散控制等各种任务的跨越。今天的PLC在处理模拟量、数字运算、人机接口和网络的各方面能力都已大幅提高,成为工业控制领域的主流控制设备,在各行各业发挥着越来越大的作用。

二、PLC的应用领域

目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保及文化等各个行业,使用情况主要分为如下几类:

1.开关量逻辑控制

取代传统的继电器电路,实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多机及自动化流水线。如注塑机、印刷机、订书机械、组合机床、磨床、包装生产线、电镀流水线等。

2.工业过程控制

在工业生产过程当中,存在一些如温度、压力、流量、液位和速度等连续变化的量(即模拟量),PLC采用相应的A/D和D/A转换模块及各种各样的控制算法程序来处理模拟量,完成闭环控制。PID调节是一般闭环控制系统中用得较多的一种调节方法。过程控制在冶金、化工、热处理、锅炉控制等场合有非常广泛的应用。

3.运动控制

PLC可以用于圆周运动或直线运动的控制。一般使用的运动控制模块,如可驱动步进电机或伺服电机的单轴或多轴位置控制模块,广泛用于各种机械、机床、机器人、电梯等场合。

4.数据处理

PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分析及处理。数据处理一般用于如造纸、冶金、食品工业中的一些大型控制系统。

5.通信及联网

PLC通信含PLC间的通信及PLC与其它智能设备间的通信。随着工厂自动化网络的发展,现在的PLC都具有通信接口,通信非常方便。

三、PLC的应用特点

1.性高,抗干扰能力强

高性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了的抗干扰技术,具有很高的性。使用PLC构成控制系统,和同等规模的继电接触器系统相比,电气接线及开关接点已减少到数百甚至数千分之一,故障也就大大降低。此外,PLC带有硬件故障自我功能,出现故障时可及时发出警报信息。在应用软件中,应用者还可以编入外围器件的故障自诊断程序,使系统中除PLC以外的电路及设备也获得故障自诊断保护。这样,整个系统将高的性。

2.配套齐全,功能完善,适用性强

PLC发展到今天,已经形成了各种规模的系列化产品,可以用于各种规模的工业控制场合。除了逻辑处理功能以外,PLC大多具有完善的数据运算能力,可用于各种数字控制领域。多种多样的功能单元大量涌现,使PLC渗透到了位置控制、温度控制、CNC等各种工业控制中。加上PLC通信能力的增强及人机界面技术的发展,使用PLC组成各种控制系统变得非常容易。

3.易学易用,深受工程技术人员欢迎

PLC是面向工矿企业的工控设备。它接口容易,编程语言易于为工程技术人员接受。梯形图语言的图形符号与表达方式和继电器电路图相当接近,为不熟悉电子电路、不懂计算机原理和汇编语言的人从事工业控制打开了方便之门。

4.系统的设计,工作量小,维护方便,容易改造

PLC用存储逻辑代替接线逻辑,大大减少了控制设备外部的接线,使控制系统设计及建造的周期大为缩短,同时日常维护也变得容易起来,重要的是使同一设备经过改变程序而改变生产过程成为可能。这特别适合多品种、小批量的生产场合。

四、PLC应用中需要注意的问题

PLC是一种用于工业生产自动化控制的设备,一般不需要采取什么措施,就可以直接在工业环境中使用。然而,尽管有如上所述的性较高,抗干扰能力较强,但当生产环境过于恶劣,电磁干扰特别强烈,或安装使用不当,就可能造成程序错误或运算错误,从而产生误输入并引起误输出,这将会造成设备的失控和误动作,从而不能保证PLC的正常运行,要提高PLC控制系统性,一方面要求PLC生产厂家提高设备的抗干扰能力;另一方面,要求设计、安装和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。因此在使用中应注意以下问题:

1.工作环境

(1)温度

PLC要求环境温度在0~55oC,安装时不能放在发热量大的元件下面,四周通风散热的空间应足够大。

(2)湿度

为了保证PLC的绝缘性能,空气的相对湿度应小于85%(无凝露)。

(3)震动

应使PLC远离强烈的震动源,防止振动频率为10~55Hz的频繁或连续振动。当使用环境不可避免震动时,采取减震措施,如采用减震胶等。

(4)空气

避免有腐蚀和易燃的气体,例如、等。对于空气中有较多粉尘或腐蚀性气体的环境,可将PLC安装在封闭性较好的控制室或控制柜中。

(5)电源

PLC对于电源线带来的干扰具有一定的抵制能力。在性要求很高或电源干扰特别严重的环境中,可以安装一台带屏蔽层的隔离变压器,以减少设备与地之间的干扰。一般PLC都有直流24V输出提供给输入端,当输入端使用外接直流电源时,应选用直流稳压电源。因为普通的整流滤波电源,由于纹波的影响,容易使PLC接收到错误信息。

2.控制系统中干扰及其来源

现场电磁干扰是PLC控制系统中常见也是易影响系统性的因素之一,所谓治标先治本,找出问题所在,才能提出解决问题的办法。因此知道现场干扰的。(1)干扰源及一般分类

影响PLC控制系统的干扰源,大都产生在电流或电压剧烈变化的部位,其原因是电流改变产生磁场,对设备产生电磁辐射;磁场改变产生电流,电磁高速产生电磁波。通常电磁干扰按干扰模式不同,分为共模干扰和差模干扰。共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压叠加所形成。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流,亦可为交流。差模干扰是指作用于信号两间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰叠加在信号上,直接影响测量与控制精度。

(2)PLC系统中干扰的主要来源及途径

强电干扰

PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压。尤其是电网内部的变化,开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。

柜内干扰

控制柜内的高压电器,大的电感性负载,混乱的布线都容易对PLC造成一定程度的干扰。

来自信号线引入的干扰

与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。

来自接地系统混乱时的干扰

接地是提高电子设备电磁兼容性(EMC)的有效手段之一。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统将无法正常工作。

来自PLC系统内部的干扰

主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。

变频器干扰

一是变频器启动及运行过程中产生谐波对电网产生传导干扰,引起电网电压畸变,影响电网的供电质量;二是变频器的输出会产生较强的电磁辐射干扰,影响周边设备的正常工作。

3.主要抗干扰措施

(1)电源的合理处理,抑制电网引入的干扰

对于电源引入的电网干扰可以安装一台带屏蔽层的变比为1:1的隔离变压器,以减少设备与地之间的干扰,还可以在电源输入端串接LC滤波电路。

(2)安装与布线

●动力线、控制线以及PLC的电源线和I/O线应分别配线,隔离变压器与PLC和I/O之间应采用双胶线连接。将PLC的IO线和大功率线分开走线,如在同槽内,分开捆扎交流线、直流线,若条件允许,分槽走线,这不仅能使其有尽可能大的空间距离,并能将干扰降到限度。

●PLC应远离强干扰源如电焊机、大功率硅整流装置和大型动力设备,不能与高压电器安装在同一个开关柜内。在柜内PLC应远离动力线(二者之间距离应大于200mm)。与PLC装在同一个柜子内的电感性负载,如功率较大的继电器、接触器的线圈,应并联RC消弧电路。

●PLC的输入与输出分开走线,开关量与模拟量也要分开敷设。模拟量信号的传送应采用屏蔽线,屏蔽层应一端或两端接地,接地电阻应小于屏蔽层电阻的1/10。

●交流输出线和直流输出线不要用同一根电缆,输出线应尽量远离高压线和动力线,避免并行。

(3)I/O端的接线

输入接线

●输入接线一般不要太长。但如果环境干扰较小,电压降不大时,输入接线可适当长些。

●输入/输出线不能用同一根电缆,输入/输出线要分开。

●尽可能采用常开触点形式连接到输入端,使编制的梯形图与继电器原理图一致,便于阅读。

输出连接

●输出端接线分为立输出和公共输出。在不同组中,可采用不同类型和电压等级的输出电压。但在同一组中的输出只能用同一类型、同一电压等级的电源。

●由于PLC的输出元件被封装在印制电路板上,并且连接至端子板,若将连接输出元件的负载短路,将烧毁印制电路板。

●采用继电器输出时,所承受的电感性负载的大小,会影响到继电器的使用寿命,因此,使用电感性负载时应合理选择,或加隔离继电器。

●PLC的输出负载可能产生干扰,因此要采取措施加以控制,如直流输出的续流管保护,交流输出的阻容吸收电路,晶体管及双向晶闸管输出的旁路电阻保护。

(4)正确选择接地点,完善接地系统

良好的接地是保证PLC工作的重要条件,可以避免偶然发生的电压冲击危害。接地的目的通常有两个,其一为了,其二是为了抑制干扰。完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。

PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态如雷击时,地线电流将大。

此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内又会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。

●地或电源接地

将电源线接地端和柜体连线接地为接地。如电源漏电或柜体带电,可从接地导入地下,不会对人造成伤害。

●系统接地

PLC控制器为了与所控的各个设备同电位而接地,叫系统接地。接地电阻值不得大于4Ω,一般需将PLC设备系统地和控制柜内开关电源负端接在一起,作为控制系统地。

●信号与屏蔽接地

一般要求信号线要有的参考地,屏蔽电缆遇到有可能产生传导干扰的场合,也要在就地或者控制室接地,防止形成“地环路”。信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏蔽电缆连接时,各屏蔽层应相互连接好,并经绝缘处理,选择适当的接地处单点接点。

(5)对变频器干扰的抑制

变频器的干扰处理一般有下面几种方式:

加隔离变压器,主要是针对来自电源的传导干扰,可以将绝大部分的传导干扰阻隔在隔离变压器之前。

使用滤波器,滤波器具有较强的抗干扰能力,还具有防止将设备本身的干扰传导给电源,有些还兼有尖峰电压吸收功能。

使用输出电抗器,在变频器到电动机之间增加交流电抗器主要是减少变频器输出在能量传输过程中线路产生电磁辐射,影响其它设备正常工作。

五、结束语

PLC控制系统中的干扰是一个十分复杂的问题,因此在抗干扰设计中应综合考虑各方面的因素,合理有效地抑制抗干扰,才能够使PLC控制系统正常工作。随着PLC应用领域的不断拓宽,如何的使用PLC也成为其发展的重要因素。21世纪,PLC会有大的发展,产品的品种会丰富、规格齐全,通过的人机界面、完备的通信设备会好地适应各种工业控制场合的需求,PLC作为自动化控制网络和通用网络的重要组成部分,将在工业控制领域发挥越来越大的作用。

20220222173907301904.jpg202202221739073176584.jpg202202221739072455394.jpg


PLC是一种微机,但用它来实现继电接触控制系统的功能时,就勿须从计算机的角度去研究,而是将PLC的内部结构等效为一个继电器电路。在PLC内部的一个触发器等效为一个继电器,通过预先编制好并存人内存的程序来实现控制作用的,因此,对使用者来说,可以不去理会微机及存储器内部的复杂结构,而是将PLC看成是由许多继电器组成的控制器,但这些继电器的通断是由软件来控制的,因此称为“软继电器”。

任何一个继电器控制系统,都是由输人部分、逻辑部分和输出部分组成。

输人部分是由一些控制按钮、操作开关、限位开关、光电管信号等组成,它接收来自被控对象上的各种开关信息,或操作台上的操作命令。

逻辑部分是根据被控对象的要求而设计的各种继电器控制线路,这些继电器的动作是按一定的逻辑关系进行的。

输出部分是指根据用户需要而选择的各种输出设备.如电磁阀线圈、接通电机的各种接触器、信号灯等。

当将PLC:看成是由许多“软继电器”组成的控制器时,可以画出其相应的内部等效电器电路。

PLC的内部等效电路(如图中的大框线内所示)分别与用户输人设备和输出设备相连接。输人设备相当于继电器控制电路中的信号接收环节,如操作按钮、控制开关等;输出设备相当于继电器控制电路中的执行环节,如电磁阀、接触器等。湿度传感器探头,,不锈钢电热管PT100传感器,,铸铝加热器,加热圈流体电磁阀

在PLC内部为用户提供的等效继电器有输人继电器、输出继电器、辅助继电器、时间继电器、计数继电器等。

输人继电器与PLC的输入端子相连接,用来接受外部输人设备发来的信号,它不能用内部的程序指令控制。

输出继电器的触头与PLC的输出端子相连接,用来控制外部输出设备,它的状态由内部的程序指令控制。

辅助继电器相当于继电器控制系统中的中间继电器,其触头不能直接控制外部输出设备。

时间继电器又称为定时器0个定时器的定时值确定后,一旦启动定时器,便以一定的单位(例10ms)开始递减(或递增),当定时器中设定的是时值减为0(或增加到设定值)时,定时器的触头就动作。

计数继电器又称为计数器。每个计数器的计数值确定后,一且启动计数器,每来一个脉冲。计数值便减(或加)1,直到设定的计数值减为0(或增加到设定值)时,计数器的输出触头就动作。

值得注意的是,上述“软继电器”只是等效继电器,PLC中并没有这样的实际继电器,“软继电器”的线圈中也没有相应的电流通过,它们的工作由编制的程序来确定。

自来水厂的制水过程是从水源地取水经输水管网至水厂,处理达标后通过配水管网送至用户。惠州市江北水厂是以东江河水为水源的水厂,从取水泵站至水厂约3KM,一期工程设计供水能力为20万吨/日,1999年9月22日正式供水。该厂采用集散测控管理系统,控制方式采用PLC+PC的监控方式,设制一个控制主站和四个现场分站,各PLC站之间通过三菱MELSECNET/10网通讯,控制室与各计算机之间用三菱通讯模块A1SJ71UC24-R2通讯,现场设备的控制方式分为手动与自动两种控制方式:手动时PLC监测设备的运行状态;自动时PLC监控设备的运行。江北水厂所有的PLC均采用三菱AnS系列,完成了逻辑控制、过程控制、PID等多种控制任务。江北水厂所涉及的变频控制采用三菱变频器,它们与PLC配合达到了优控制。上位机采用美国Inbbtion公司的FIX组态软件及国产组态王软件。

2、江北水厂对控制系统的要求

1)、分散性

根据江北水厂工艺的特点,分为取水泵站、投矾车间、投氯车间、反应池、平流滤、滤池、清水池、供水泵站等。由于主体设备过于分散因此需要控制系统设计成几个不同功能的分站,通过网络使各个站之间既立又关联,互不影响地进行各自的控制任务。

2)、集中监控

为了确保供水水制,操作人员需要在中控室对整个水厂的生产情况了解,并进行集中监控。

3)、性、性

水厂的、稳定运行直接关系到千家万户,所以从控制系统的结构设计、软硬件产品质量到控制程序编制等各个环节都是高性的。

4)、可维护性

系统在系统软件、应用软件和硬件方面具有强大的报警和故障自诊断功能,方便工程师对系统故障进行分析和维护。

5)、可扩展性

系统应采用具有一定标准及应用较为广泛的软硬件产品,并考虑一定的余量,为将来水厂的扩建及系统的变打下基础。

6)、开放性

开放性是用户对控制系统的普遍需求。随着计算机和网络技术的发展和应用的普及,人们越来越需要过程控制系统与管理信息系统交互信息,从而实现管理与控制一体化。终达到向管理要效率,向管理要效益。尽管各控制系统生产厂家在现场控制器模块级还不可能开放或通用,但要求上位机监控系统具有开放性,例如:监控系统应基于微软公司的bbbbbbsNT、2000或9X平台,支持各种规范的协议如OPC、ODBC、ActiveX、DDE等。

3、控制系统构成

1)、控制系统硬件

如图所示,江北水厂根据系统不同功能分为五个PLC站,应用三菱MELSECNET/10网组网通讯,通过A1SJ71UC24-R2与计算机通讯。利用电信局帧中继与公司调度室进行。远程测压点通过无线通讯进行。根据生产的特点五个PLC站分别为投加分站、平流池分站、滤池分站、反冲分站、主站。所有PLC站均采用三菱AnS系列PLC。

A、投加分站以过程控制为主,利用仪表、变频器进行投氯、投矾的回路控制。仪表输出4-20mA标准信号。

B、排泥车分站以逻辑控制为主,通过PLC发出的指令,指令通过中间继电器及变频器,对行车的电机及泵等设备进行开停、运行频率变化等控制,以达到运行的高度自动化。

C、滤池分站是逻辑控制与过程控制相辅相成,并加入了PID控制。在几个站中滤池分站属于复杂繁烦,我厂有十组滤池,并且都投入运行,三菱PLC能达到控制要求。

D、反冲分站主要是以逻辑控制为主,当PLC接受到滤池站发出的反冲要求指令时,开始按程序顺序地进行控制。

E、主站以逻辑控制为主,其作用主要是加强报警功能,将各分站发生的紧急事故,时间通知值班人员。

以上各站中主站CPU选用三菱A2ASCPU-S1(I/O点数1024,存储容量256K),其它各站选用A2ASCPU(I/O点数512,存储容量64K),A/D转换模块选用A1S68AD,D/A转换模块选用A1S68DAI,在网络方面选用了A1SJ71BR11模块组成的同轴电缆总线方式的MELSECNET/10网。此网络的大优点是当一个站由于电源故障或其它故障而脱网时,这个站将被分离,数据链接继续在有效的站间进行,当故障时,它自动返回在线状态,重新开始通信。从江北水厂投产运行至今,除了一次被雷电击坏了网络模块以外,还没有因PLC故障导致生产无法正常运行的事件发生。

由于篇幅有限,这里主要讲一下PID控制,水厂涉及PID控制回路主要是滤池站,在PID控制回路中要给出一个水位的设定值(SV值),通过PID控制单元将过程值(PV值)与设定值(SV值)对比,并执行PID控制算法,送出适合于执行机构特性的命令值(MV值)。执行机构是由模拟输出控制。我厂共有10组滤池,因些组数设为10,设定执行周期为K100(1sec),P值为K1000(10),I值为K2000(200sec),D值为K0。实际应用中能满足控制要求,达到V型滤池恒水位控制的要求,我厂PID控制可以分为自动和手动两种方式,自动控制即由PLC进行全自动控制,不需要进行人工干预。手动控制即在上位机上给定一个阀位输出值(MV值),通过PLC对阀位进行控制,手动方式时内部设不与测量值校准。

编程梯形图软件用三菱公司的GPPW软件,在组网设置方面非常简便,在程序调试方面及在线检测方面已大大优越于老版本的GPPA。

变频器的使用中,我们接触过两款三菱公司的变频器,FR-A044-2.2K和FR-E540-0.75K,产品均采用以微处理器的数字控制技术,在使用过程中都能达到很好的响应能力,具有频率设定检测、负荷选择、电流输入等,共计100多个参数选择。及对变频器过载、CPU故障、电机再生电压过大等多种故障进行监控。当设备发生故障时,该变频器可及时停止运行,防止事态恶习化,并通过参数单元显示故障代码,提高查找故障的效率。相比FR-E540-0.75K调节参数设置方面没有FR-A044-2.2K方便。使用变频器后感觉大的优点是:变速区段全由软件设置,具有柔性控制的特点。




http://zhangqueena.b2b168.com

产品推荐