6ES7360-3AA01-0AA0参数方式
  • 6ES7360-3AA01-0AA0参数方式
  • 6ES7360-3AA01-0AA0参数方式
  • 6ES7360-3AA01-0AA0参数方式

产品描述

产品规格模块式 包装说明全新

6ES7360-3AA01-0AA0参数方式

1.概述
      随着科学技术的发展,PLC在工业控制中的应用越来越广泛。PLC控制系统的性直接影响到工业企业的生产和经济运行,系统的抗干扰能力是关系到整个系统运行的关键。自动化系统中所使用的各种类型PLC,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统性,设计人员只有预先了解各种干扰才能有效保证系统运行。
2.电磁干扰源及对系统的干扰是什么?
      影响PLC控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。
      干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按声音干扰模式不同,分为共模干扰和差模干扰。共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地面的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压送加所形成。共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的原因),这种共模干扰可为直流、亦可为交流。差模干扰是指用于信号两间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种直接叠加在信号上,直接影响测量与控制精度。

3.PLC控制系统中电磁干扰的主要来源有哪些呢?
(1)来自空间的辐射干扰
      空间的辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布为复杂。若PLC系统置于射频场内,就回受到辐射干扰,其影响主要通过两条路径;一是直接对PLC内部的辐射,由电路感应产生干扰;二是对 PLC通信内网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小,特别是频率有关,一般通过设置屏蔽电缆和PLC局部屏蔽及高压泄放元件进行保护。
(2)来自系统外引线的干扰
主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较严重。
(3)来自电源的干扰
实践证明,因电源引入的干扰造成PLC控制系统故障的情况很多,笔者在某工程调试中遇到过,后换隔离性能高的PLC电源,问题才得到解决。
PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,将受到所有空间电磁干扰而在线路上感应电压和电路。尤其是电网内部的变化,开关操作浪涌、大型电力设备起停、交直流转动装置引起的谐波、电网短路暂态冲击等,都通过输电线路到电源边。PLC电源通常采用隔离电源,但其机构及制造工艺因素使其隔离性并不理想。实际上,由于分布参数特别是分布电容的存在,隔离是不可能的。
(4)来自信号线引入的干扰
与PLC控制系统连接的各类信号传输线,除了传输有效的各类信号之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器或共用信号仪表的供电电源串入的电网干扰,这往往被忽略;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。PLC控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。

(5)来自接地系统混乱时的干扰
接地是提高电子设备电磁兼容性(EMC)的有效手段之一。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统将无法正常工作。PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态加雷击时,地线电流将大。
此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内有会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存储,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。
(6)来自PLC系统内部的干扰
主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。这都属于PLC制造厂对系统内部进行电磁兼容设计的内容,比较复杂,作为应用部门是无法改变,可不多考虑,但要选择具有较多应用实绩或经过考验的系统。



4.怎样才能好、简单解决PLC系统干扰?
1)选用隔离性能较好的设备、选用优良的电源,动力线和信号线走线要加合理等等,也能解决干扰,但是比较烦琐、不易操作而且成本较高。
2)利用信号隔离器这种产品解决干扰问题。只要在有干扰的地方,输入端和输出端中间加上这种产品,就可有效解决干扰问题。


5.为什么解决PLC系统干扰都选信号隔离器呢?
1)使用简单方便、,廉。
2)可大量减轻设计人员、系统调试人员工作量,即使复杂的系统在普通的设计人员手里,也会变的非常。


6.信号隔离器工作原理是什么?
将PLC接收的信号,通过半导体器件调制变换,然后通过光感或磁感器件进行隔离转换,然后再进行解调变换回隔离前原信号或不同信号,同时对隔离后信号的供电电源进行隔离处理。保证变换后的信号、电源、地之间立。


7.信号隔离器功能是什么?
一:保护下级的控制回路。
二:消弱环境噪声对测试电路的影响。
三:抑制公共接地、变频器、电磁阀及不明脉冲对设备的干扰;同时对下级设备具有限压、额流的功能是变送器、仪表、变频器、电磁阀PLC/DCS输入输出及通讯接口的忠实防护。标准系列导轨结构,易于安装,可有效的隔离:输入、输出和电源及大地之间的电位。能够克服变频器噪声及各种高低频脉动干扰。

8.现在市场有那么多的隔离器,价格参差不齐,该怎么选择呢?
隔离器位于二个系统通道之间,所以选择隔离器要确定输入输出功能,同时要使隔离器输入输出模式(电压型、电流型、环路供电型等)适应前后端通道接口模式。此外尚有精度﹑功耗﹑噪音﹑绝缘强度﹑总线通讯功能等许多重要参数涉及产品性能,例如:噪音与精度有关、功耗热量与性有关,这些需要使用者慎选。总之,适用、、产品性价比是选择隔离器的主要原则。


 1.概述
      随着科学技术的发展,PLC在工业控制中的应用越来越广泛。PLC控制系统的性直接影响到工业企业的生产和经济运行,系统的抗干扰能力是关系到整个系统运行的关键。自动化系统中所使用的各种类型PLC,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统性,设计人员只有预先了解各种干扰才能有效保证系统运行。
2.电磁干扰源及对系统的干扰是什么?
      影响PLC控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。
      干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按声音干扰模式不同,分为共模干扰和差模干扰。共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地面的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压送加所形成。共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的原因),这种共模干扰可为直流、亦可为交流。差模干扰是指用于信号两间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种直接叠加在信号上,直接影响测量与控制精度。

3.PLC控制系统中电磁干扰的主要来源有哪些呢?
(1)来自空间的辐射干扰
      空间的辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布为复杂。若PLC系统置于射频场内,就回受到辐射干扰,其影响主要通过两条路径;一是直接对PLC内部的辐射,由电路感应产生干扰;二是对 PLC通信内网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小,特别是频率有关,一般通过设置屏蔽电缆和PLC局部屏蔽及高压泄放元件进行保护。
(2)来自系统外引线的干扰
主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较严重。
(3)来自电源的干扰
实践证明,因电源引入的干扰造成PLC控制系统故障的情况很多,笔者在某工程调试中遇到过,后换隔离性能高的PLC电源,问题才得到解决。
PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,将受到所有空间电磁干扰而在线路上感应电压和电路。尤其是电网内部的变化,开关操作浪涌、大型电力设备起停、交直流转动装置引起的谐波、电网短路暂态冲击等,都通过输电线路到电源边。PLC电源通常采用隔离电源,但其机构及制造工艺因素使其隔离性并不理想。实际上,由于分布参数特别是分布电容的存在,隔离是不可能的。
(4)来自信号线引入的干扰
与PLC控制系统连接的各类信号传输线,除了传输有效的各类信号之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器或共用信号仪表的供电电源串入的电网干扰,这往往被忽略;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。PLC控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。

(5)来自接地系统混乱时的干扰
接地是提高电子设备电磁兼容性(EMC)的有效手段之一。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统将无法正常工作。PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态加雷击时,地线电流将大。
此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内有会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存储,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。
(6)来自PLC系统内部的干扰
主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。这都属于PLC制造厂对系统内部进行电磁兼容设计的内容,比较复杂,作为应用部门是无法改变,可不多考虑,但要选择具有较多应用实绩或经过考验的系统。



4.怎样才能好、简单解决PLC系统干扰?
1)选用隔离性能较好的设备、选用优良的电源,动力线和信号线走线要加合理等等,也能解决干扰,但是比较烦琐、不易操作而且成本较高。
2)利用信号隔离器这种产品解决干扰问题。只要在有干扰的地方,输入端和输出端中间加上这种产品,就可有效解决干扰问题。


5.为什么解决PLC系统干扰都选信号隔离器呢?
1)使用简单方便、,廉。
2)可大量减轻设计人员、系统调试人员工作量,即使复杂的系统在普通的设计人员手里,也会变的非常。


6.信号隔离器工作原理是什么?
将PLC接收的信号,通过半导体器件调制变换,然后通过光感或磁感器件进行隔离转换,然后再进行解调变换回隔离前原信号或不同信号,同时对隔离后信号的供电电源进行隔离处理。保证变换后的信号、电源、地之间立。


7.信号隔离器功能是什么?
一:保护下级的控制回路。
二:消弱环境噪声对测试电路的影响。
三:抑制公共接地、变频器、电磁阀及不明脉冲对设备的干扰;同时对下级设备具有限压、额流的功能是变送器、仪表、变频器、电磁阀PLC/DCS输入输出及通讯接口的忠实防护。标准系列导轨结构,易于安装,可有效的隔离:输入、输出和电源及大地之间的电位。能够克服变频器噪声及各种高低频脉动干扰。

8.现在市场有那么多的隔离器,价格参差不齐,该怎么选择呢?
隔离器位于二个系统通道之间,所以选择隔离器要确定输入输出功能,同时要使隔离器输入输出模式(电压型、电流型、环路供电型等)适应前后端通道接口模式。此外尚有精度﹑功耗﹑噪音﹑绝缘强度﹑总线通讯功能等许多重要参数涉及产品性能,例如:噪音与精度有关、功耗热量与性有关,这些需要使用者慎选。总之,适用、、产品性价比是选择隔离器的主要原则。

202202221739072455394.jpg20220222173907301904.jpg202202221739073176584.jpg



1 引言

数控机床是典型的机电一体化系统。PLC工程现场界面涉及光、机、电、气、液等复杂的输入输出信令,加之PLC对于信号的逻辑处理具有的抽象运算特征,使得工业现场故障处理工作通常是相当的复杂困难,PLC机电系统现场故障往往使得缺少工程经验的设备管理者们束手无策,较长时间的故障处理处理可以大幅度降低产能,严重影响生产。本文以就事论事的方式平铺直叙具体的机电工程现场故障处理案例,保留住故障处理经验中珍贵的分析判断过程。

2 数控机床故障诊断案例

2.1 甄别PLC内外部故障实例

配备820数控系统的某加工,产生7035号报警,查阅报警信息为工作台分度盘不回落。在SINUMERIK 810/820S数控系统中,7字头报警为PLC操作信息或机床厂设定的报警,指示CNC系统外的机床侧状态不正常。处理方法是,针对故障的信息,调出PLC输入/输出状态与拷贝清单对照。

工作台分度盘的回落是由工作台下面的接近开关SQ25、SQ28来检测的,其中SQ28检测工作台分度盘旋转到位,对应PLC输入接口110.6,SQ25检测工作台分度盘回落到位,对应PLC输入接口110.0。工作台分度盘的回落是由输出接口Q4.7通过继电器KA32驱动电磁阀YV06动作来完成。

从PLC STATUS中观察,110.6为“1”,表明工作台分度盘旋转到位,I10.0为“0”,表明工作台分度盘未回落,再观察Q4.7为“0”,KA32继电器不得电,YV06电磁阀不动作,因而工作台分度盘不回落产生报警。

处理方法:手动YV06电磁阀,观察工作台分度盘是否回落,以区别故障在输出回路还是在PLC内部。

2.2 诊断接近开关故障实例

某立式加工自动换故障。

故障现象:换臂平移到位时,无拔动作。

ATC动作的起始状态是:(1)主轴保持要交换的旧。(2)换臂在B位置。(3)换臂在上部位置。(4)库已将要交换的新定位。

自动换的顺序为:换臂左移(B→A)→换臂下降(从库拔)→换臂右移(A→B)→换臂上升→换臂右移(B→C,抓住主轴中)→主轴液压缸下降(松)→换臂下降(从主轴拔)→换臂旋转180°(两交换位置)→换臂上升(装)→主轴液压缸上升(抓)→换臂左移(C→B)→库转动(找出旧位置)→换臂左移(B→A,返回旧给库)→换臂右移(A→B)→库转动(找下把)。换臂平移至C位置时,无拔动作,分析原因,有几种可能:

(1)SQ2无信号,使松电磁阀YV2未激磁,主轴仍处抓状态,换臂不能下移。

(2)松接近开关SQ4无信号,则换臂升降电磁阀YV1状态不变,换臂不下降。

(3)电磁阀有故障,给予信号也不能动作。

逐步检查,发现SQ4未发信号,进一步对SQ4检查,发现感应间隙过大,导致接近开关无信号输出,产生动作障碍。

2.3 诊断压力开关故障实例

2.4 诊断中间继电器故障实例

某数控机床出现防护门关不上,自动加工不能进行的故障,而且无故障显示。该防护门是由气缸来完成开关的,关闭防护门是由PLC输出Q2.0控制电磁阀YV2.0来实现。检查Q2.0的状态,其状态为“1”,但电磁阀YV2.0却没有得电,由于PLC输出Q2.0是通过中间继电器KA2.0来控制电磁阀YV2.0的,检查发现,中间继电器损坏引起故障,换继电器,故障被排除。

另外一种简单实用的方法,就是将数控机床的输入/输出状态列表,通过比较通常状态和故障状态,就能诊断出故障的部位。

2.5 根据梯形图逻辑诊断DI点故障实例

配备SINUMERIK 810数控系统的加工,出现分度工作台不分度的故障且无故障报警。根据工作原理,分度时将分度的齿条与齿轮啮合,这个动作是靠液压装置来完成的,由PLC输出Q1.4控制电磁阀YVl4来执行,PLC梯形图如下图所示。

通过数控系统的DIAGNOSIS能中的“STATUS PLC”软键,实时查看Q1.4的状态,发现其状态为“0”,由PLC梯形图查看F123.0也为“0”,按梯形图逐个检查,发现F105.2为“0”导致F123.0也为“0”,根据梯形图,查看STATUS PLC中的输入信号,发现I10.2为“0”,从而导致F105.2为“0”。I9.3、I9.4、I10.2和I10.3为四个接近开关的检测信号,以检测齿条和齿轮是否啮合。分度时,这四个接近开关都应有信号,即I9.3、I9.4、I10.2和I10.3应闭合,现I10.2未闭合,处理方法:(1)检查机械传动部分。(2)检查接近开关是否损坏。

2.6 根据梯形图逻辑诊断DO点故障实例

配备SINUMERIK 810数控系统的双工位、双主轴数控机床。

故障现象:机床在AUTOMATIC方式下运行,工件在一工位加工完,一工位主轴还没有退到位且旋转工作台正要旋转时,二工位主轴停转,自动循环中断,并出现报警且报警内容表示二工位主轴速度不正常。

两个主轴分别由B1、B2两个传感器来转速,通过对主轴传动系统的检查,没发现问题。用机外编程器观察梯形图的状态。

F112.0为二工位主轴起动标志位,F111.7为二工位主轴起动条件,Q32.0为二工位主轴起动输出,I21.1为二工位主轴卡紧检测输入,F115.1为二工位卡紧标志位。

在编程器上观察梯形图的状态,出现故障时,F112.0和Q32.0状态都为“0”,因此主轴停转,而F112.0为“0”是由于Bl、B2主轴速度不正常所致。动态观察Q32.0的变化,发现故障没有出现时,F112.0和F111.7都闭合,而当出现故障时,F111.7瞬间断开,之后又马上闭合,Q32.0随F111.7瞬间断开其状态变为“0”,在Flll.7闭合的同时,F112.0的状态也变成了“0”,这样Q32.0的状态保持为“0”,主轴停转。Bl、B2由于Q32.0随F111.7瞬间断开测得速度不正常而使F112.0状态变为“0”。主轴起动的条件F111.7受多方面因素的制约,从梯形图上观察,发现F111.6的瞬间变“0”引起Flll.7的变化,向下检查梯形图PB8.3,发现卡紧标志F115.1瞬间变“0”,促使Flll.6发生变化,继续跟踪梯形图PB13.7,观察发现,在出故障时,I21.1瞬间断开,使F115.1瞬间变“0”,后使主轴停转。I21.1是液压卡紧压力检测开关信号,它的断开指示卡紧力不够。由此诊断故障的根本原因是液压卡紧力波动,调整液压使之正常,故障排除。

3 结束语

通过典型实例与故障现象对数控系统、立式加工自动换故障、配备FANUC 0T系统的某数控车床、配备SINUMERIK 810数控系统的双工位、双主轴数控机床等运行中存在的问题加以分析,并作出相应的故障排除方法。

 

配备FANUC 0T系统的某数控车床。

故障现象:当脚踏尾座开关使套筒紧工件时,系统产生报紧。

在系统诊断状态下,调出PLC输入信号,发现脚踏向前开关输入X04.2为“1”,尾座套筒转换开关输入X17.3为“l”,润滑油供给正常使液位开关输入X17.6为“1̶1;。调出PLC输出信号,当脚踏向前开关时,输出Y49.0为“1”,同时,电磁阀YV4.1也得电,这说明系统PLC输入/输出状态均正常,分析尾座套筒液压系统。

当电磁阀YV4.1通电后,液压油经溢流阀、流量控制阀和单向阀进入尾座套筒液压缸,使其向前紧工件。松开脚踏开关后,电磁换向阀处于中间位置,油路停止供油,由于单向阀的作用,尾座套筒向前时的油压得到保持,该油压使压力继电器常开触点接通,在系统PLC输入信号中X00.2为“l”。但检查系统PLC输入信号X00.2则为“0”,说明压力继电器有问题,其触点开关损坏。

故障原因:因压力继电器SP4.1触点开关损坏,油压信号无法接通,从而造成PLC输入信号为“0”,故系统认为尾座套筒未紧而产生报警。

解决方法:换新的压力继电器,调整触点压力,使其在向前脚踏开关动作后接通并保持到压力取消,故障排除。

当利用变频器构成自动控制系统进行控制时,很多情况下是采用PLC和变频器相配合使用,如何正确地把PLC和变频器连接在一起就成了系统成功的关键。
1.PLC开关指令信号输入
变频器输入信号中包括对运行/停止、正转/反转、微动等运行状态进行操作开关型指令信号。变频器通常利用继电器接点或具有继电器接点开关特性元器件(如晶体管)与PLC)相连,到运行状态指令。
使用继电器接点时,常常接触不良而带来误动作;使用晶体管进行连接时,则需考虑晶体管本身电压、电流容量等因素,保证系统性。
设计变频器输入信号电路时还应该注意,当输入信号电路连接不当时也会造成变频器误动作。例如,当输入信号电路采用继电器等感性负载时,继电器开闭产生浪涌电流带来噪音有可能引起变频器误动作,应尽量避免。
当输入开关信号进入变频器时,会发生外部电源和变频器控制电源(DC24V)之间串扰。正确连接是利用PLC电源,将外部晶体管集电二管接到PLC。
2.变频器数值信号输入
变频器中也存一些数值型(如频率、电压等)指令信号输入,可分为数字输入和模拟输入两种。数字输入多采用变频器面板上键盘操作和串行接口来给定;模拟输入则接线端子由外部给定,通常0~10V/5V电压信号或0/4~20mA电流信号输入。接口电路因输入信号而异,变频器输入阻抗选择PLC输出模块。
当变频器和PLC电压信号范围不同时,如变频器输入信号为0~10V,而PLC输出电压信号范围为0~5V时;或PLC一侧输出信号电压范围为0~10V而变频器输入电压信号范围为0~5V时,变频器和晶体管允许电压、电流等因素限制,需用串联方式接入限流电阻及分压方式,以保证进行开闭时不过PLC和变频器相应容量。此外,连线时还应注意将布线分开,保证主电路一侧噪音不传到控制电路。
通常变频器也接线端子向外部输出相应监测模拟信号。电信号范围通常为0~10V/5V及0/4~20mA电流信号。哪种情况,都应注意:PLC一侧输入阻抗大小要保证电路中电压和电流不过电路允许值,以保证系统性和减少误差。)另外,这些监测系统组成互不相同,有不清楚方应向厂家咨询。
另外,使用PLC进行顺序控制时,CPU进行数据处理需要时间,存一定时间延迟,故较控制时应予以考虑。变频器运行中会产生较强电磁干扰,为保证PLC不变频器主电路断路器及开关器件等产生噪音而出现故障,将变频器与PLC相连接时应该注意以下几点:
(1)对PLC本身应按规定接线标准和接条件进行接,应注意避免和变频器使用共同接线,且接时使二者尽可能分开。
(2)当电源条件不太好时,应PLC电源模块及输入/输出模块电源线上接入噪音滤波器和降低噪音用变压器等,另外,若有必要,变频器一侧也应采取相应措施。
(3)当把变频器和PLC安装于同一操作柜中时,应尽可能使与变频器有关电线和与PLC有关电线分开。
(4)使用屏蔽线和双绞线达到提高噪音干扰水平。
3.结束语

PLC和变频器连接应用时,二者涉及到用弱电控制强电,,应该注意连接时出现干扰,避免干扰造成变频器误动作,连接不当导致PLC或变频器损坏。

当利用变频器构成自动控制系统进行控制时,很多情况下是采用PLC和变频器相配合使用,如何正确地把PLC和变频器连接在一起就成了系统成功的关键。
1.PLC开关指令信号输入
变频器输入信号中包括对运行/停止、正转/反转、微动等运行状态进行操作开关型指令信号。变频器通常利用继电器接点或具有继电器接点开关特性元器件(如晶体管)与PLC)相连,到运行状态指令。
使用继电器接点时,常常接触不良而带来误动作;使用晶体管进行连接时,则需考虑晶体管本身电压、电流容量等因素,保证系统性。
设计变频器输入信号电路时还应该注意,当输入信号电路连接不当时也会造成变频器误动作。例如,当输入信号电路采用继电器等感性负载时,继电器开闭产生浪涌电流带来噪音有可能引起变频器误动作,应尽量避免。
当输入开关信号进入变频器时,会发生外部电源和变频器控制电源(DC24V)之间串扰。正确连接是利用PLC电源,将外部晶体管集电二管接到PLC。
2.变频器数值信号输入
变频器中也存一些数值型(如频率、电压等)指令信号输入,可分为数字输入和模拟输入两种。数字输入多采用变频器面板上键盘操作和串行接口来给定;模拟输入则接线端子由外部给定,通常0~10V/5V电压信号或0/4~20mA电流信号输入。接口电路因输入信号而异,变频器输入阻抗选择PLC输出模块。
当变频器和PLC电压信号范围不同时,如变频器输入信号为0~10V,而PLC输出电压信号范围为0~5V时;或PLC一侧输出信号电压范围为0~10V而变频器输入电压信号范围为0~5V时,变频器和晶体管允许电压、电流等因素限制,需用串联方式接入限流电阻及分压方式,以保证进行开闭时不过PLC和变频器相应容量。此外,连线时还应注意将布线分开,保证主电路一侧噪音不传到控制电路。
通常变频器也接线端子向外部输出相应监测模拟信号。电信号范围通常为0~10V/5V及0/4~20mA电流信号。哪种情况,都应注意:PLC一侧输入阻抗大小要保证电路中电压和电流不过电路允许值,以保证系统性和减少误差。)另外,这些监测系统组成互不相同,有不清楚方应向厂家咨询。
另外,使用PLC进行顺序控制时,CPU进行数据处理需要时间,存一定时间延迟,故较控制时应予以考虑。变频器运行中会产生较强电磁干扰,为保证PLC不变频器主电路断路器及开关器件等产生噪音而出现故障,将变频器与PLC相连接时应该注意以下几点:
(1)对PLC本身应按规定接线标准和接条件进行接,应注意避免和变频器使用共同接线,且接时使二者尽可能分开。
(2)当电源条件不太好时,应PLC电源模块及输入/输出模块电源线上接入噪音滤波器和降低噪音用变压器等,另外,若有必要,变频器一侧也应采取相应措施。
(3)当把变频器和PLC安装于同一操作柜中时,应尽可能使与变频器有关电线和与PLC有关电线分开。
(4)使用屏蔽线和双绞线达到提高噪音干扰水平。



http://zhangqueena.b2b168.com

产品推荐