西门子6ES7322-1BH10-0AA0型号含义
  • 西门子6ES7322-1BH10-0AA0型号含义
  • 西门子6ES7322-1BH10-0AA0型号含义
  • 西门子6ES7322-1BH10-0AA0型号含义

产品描述

产品规格模块式包装说明全新

西门子6ES7322-1BH10-0AA0型号含义

一、PLC技术要素

1. 电力线网络单元(PNU)
它负责控制电力线网络并从单元配电网集成话务。通过适当的电信干线接口,PNU再将话务传至馈电网络。根据馈电网络中使用的不同介质,PNU也可转换来自低压配电网的数据话务。

2. 电源线网络终端(PNT)
它为终用户PC或其它用户提供适当的接口,如以太网或是USB。为了降,这一立设备能够和PC或其它设备相集成。

3. 偶合设备(CouplingUnit)
它是将信号传入线路并过滤噪音的。目前它还是一个插销插入电插座的相对立的设备,今后它可能会和PLC调制解调器集成于一体。PLC调制解调器和PC内的偶合设备的集合体有将使PC可以直接在网上运行。
配电网是一种共享介质,即所有与之相连的用户都共享同一"电缆"。在典型的城市配置中,它则转化为与一个变压器相连的大约100到200个用户。PLC系统能够在1Mbps的传输速率下支持80个用户,这一比例是足够的。由PLC技术支持的客户,需要具备一个技术条件,具有很强的带宽分配能力的介质接入控制()层。这就使电力线网络不仅仅能够支持80个Internet用户的数据往复交换,而且能够灵活地适应以不同速率传输的上行和下行数据。

二、数据信号传输技术

1、数字扩频技术(SST)
在目前的实际应用中,为了实现用于家庭或经济产品上的通信与控制网络,需要为的多用户环境的PL通信技术,扩频载波通信技术就应运而生了。

扩频通信相对于窄带通信而言具有一定技术上的优势,主要表现在抗干扰方面。因为扩频载波信号的带宽通常较大(几十至几百KHz),所以其受干扰的频率范围所占比例相对减小,换句话讲,就是各种噪声仅能影响到一小部分所要传输的信号,而大多数的信号都能够完整、正确的到达目的地,所以对于各种类型的干扰都具有较强的抵抗性。对于常见的脉冲噪声而言,尽管窄带通信中的具有较窄的通带,使得仅有一小部分噪声能进入,但由于此类接收装置中的滤波器具有因素,瞬间的脉冲噪声会使其发生自干扰,而引起它对传输来的信号产生误操作;而使用低品质因素的滤波器又会使通带带宽加大,令多的噪声进入,所以窄带通信对脉冲噪声的抵抗性较差。

然而利用扩频技术,当接收到具有较大能量的噪声信号时,会在噪声的高能部分到达时自动停止工作,所以接收方仅对一小部分受影响的信号进行纠错解码即可;另外,扩频接收设备使用的滤波器具有较低的品质因素,因而不会造成系统自干扰,所以扩频技术具有较强的抗噪能力。

一般来讲,目前实现扩频有三种途径:即直接序列调制、跳频载波和利用Chirps扫
描频率进行载波。
1) 直接序列调制(Direct-Sequence Modulation)
此技术是将信号的能量平均分布于整个频带内,并通过伪随机序列将数据流倍加来使信号得以扩频,此序列具有数倍于所传信号二进制数据位率的符号速率。
2) 跳频载波(Frequency-Hopping)
即扩频信号在某一频率通过延续一段时间,来代表数据的一位、几位或是一位的一部分。当信号在某一频率上受到干扰时,信号就可切换到扩频带宽内的其他频率上去,因而大大降低了其受干扰的程度,这种方法对于CW干扰有较强的抵抗性。
3) 利用扫描频率的Chirps进行载波
此方法多用于类似于以太网的CSMA网络,它利用一系列短促的、可自同步的扫描频率chirps作为载体,每个chirps一般持续100 us,它代表了基本的通信符号时间(UST)。这些chirps覆盖了100-400 KHz的频带,并总是以200-400 Khz的频率开始,继而以100-200 KHz的频率结束。由于chirps信号的线性扫描带宽比信号带宽要大得多,其线性加速度是较高的,而CW干扰的频率加速度一般是稳定的,所以只要将滤波器设计成只能通过具有特定角加速度的信号,就可以将CW干扰排除在外。另外,此种chirps波形还具有很强的自相关特性,这种模糊逻辑的相关性决定了所有连接在网络上的设备,可以同时识别从网上任意设备发出的这种特波形,并且不需要在发送和接收设备间进行同步。

电力线数字扩频技术可以充分利用传输频带,实现宽带高速。扩频通信可以克服窄带噪声影响和多径影响,因此非常适合电力线通信环境。
SST技术容易实现,自动选择高信噪比频段,抵御瞬间干扰;但码间干扰严重,需要非线形均衡器。
2、正交频分多路复用技术(OFDM)
正交频分多路复用技术采用多路窄带正交子载波,同时传输多路数据,每路信号的码元时间较长,可以避免码元间干扰。通过动态选择可用的子载波,该技术可以减少窄带干扰和频率谷点的影响。

OFDM技术的应用可以追溯到本世纪六十年代,主要用于通信系统。但是,一个OFDM系统的结构非常复杂,从而限制了其进一步推广。直到70年代,人们提出了采用离散傅立叶变换来实现多个载波的调制,以软件方法实现复杂的OFDM处理,简化了系统结构,使得OFDM技术趋于实用化。近年来,由于数字信号处理(DSP)技术的飞速发展,OFDM作为一种可以有效对抗信号波形间干扰的高速传输技术已经被广泛应用于民用通信系统中。

OFDM技术已应用于高速MODEM和无线调频信道上的宽带。四代移动通信(4G)中将采用OFDM技术,这使速率可以达到10Mbit/s,目前在无线局域网中也已采用了该技术。正在筹备之中的数码地面波电视播放以及正在开发中的高速无线LAN"IEEE 802.11a"都预定采用这项新技术。

正交频分多路复用技术可以提高电力线网络传输质量,即便是在配电网受到严重干扰的情况下,OFDM也可提供高带宽并且保带宽传输效率,而且适当的纠错技术可以确保的。在OFDM系统中各个子信道的载波相互正交,于是它们的频谱是相互重叠的,这样不但减小了子载波间的相互干扰,同时又提高了频谱利用率,还可以抵制等幅波干扰。但OFDM收信机复杂,成本高,要求收信大动态范围的线性放大,对瞬间干扰敏感。

三、与其它接入技术相比,电力线宽带接入网络具有以下优势:

1) 充分利用现有的低压配电网络基础设施,任何布线,是一种"No New Wires"技术,节约了资源。挖沟和穿墙打洞,避免了对建筑物和公用设施的破坏,同时也节省了人力。

2) 可以为用户提供高速因特网访问服务、话音服务,从而为用户上网和打电话增加了新的选择,有利于其它电信服务商改善服务、降格。

3) 对家庭联网提供支持,使人们可以尽享由PLC技术带来的家庭音、视频网络,多人对抗游戏等。

4) 是家居自动化的生力军,通过遍布各个房间的墙上插座将智能家电联网,提前享用数字化家庭的舒适和便利。

5) 利用PLC的在线连接,构建的防火、防盗、防有毒气体泄漏等的保安监控系统,让上班族高枕;构建的急救系统,让家有老人、孩子和病人的家庭倍感放心。利用PLC也可提供立的数字化社区服务和电子商务,实现家庭办公和远程家电控制。

6) 远程自动读出水、电、气表数据,使公用事业公司节省大量费用,也方便了用户。


1.引言

可编程控制器(PLC)以其高性、适应工业过程现场、强大的联网功能等特点,现已广泛应用于生产工艺过程。在目前的很多自控系统中,常选用PLC作为现场的控制设备,用于数据采集、状态控制和输出控制,而在系统上位机(通常为工控机)上利用工控组态软件来完成工业流程及控制参数的显示,以实现监控和管理功能。这种控制系统充分利用了微型机和PLC的各自的特点,实现了优势互补,得到了广泛的应用。

九十年代初,国内绝大多数油田对从井筒内取出的油管采取直接在现场用锅炉车产生高温蒸汽清洗的办法来清洗油管内外壁,这种办法一方面会造成环境污染,另一方面清洗效果也不理想。随着油田生产的规模化、化,大多油田成立了油管修复单位,、定员、定设备进行油管的清洗、检测、修复工序。清洗环节国内油田主要采用三种方式:高压旋转水射流、中频加热清洗和高温热洗。

根据江苏油田井下作业处真武油管修复的实际情况,设计了以研华Pentium Ⅲ工控机、OMRON CQM1H-CPU21型PLC为硬件,以组态王KingView6.01为软件平台的计算机监控系统,对油管进行高温热洗操作。系统总体设计如图1.



下面从硬件和软件两方面对油管高温热洗工艺进行分析。

2.硬件构成

利用现有一台2T锅炉通过旁管对热洗池内清洗液(主要成分为清水,含适量比例的氢氧化钠和金属表面活性剂配剂)进行加热。考虑油管体积、质量较大,人工搬运不便,且热洗间处于高温危险环境,故采用机械滚轮传输、气缸举升和机械式链提升装置,并由磁敏、光电或机械式行程开关对油管进行限位或控制滚轮、气缸的动作。

整个工艺系统设计采用OMRON CQM1H-CPU21型PLC作为控制。CPU21本身具有16个数字量I/O点,通过外接输入模块ID212四块和输出模块OC222三块作为I/O口功能扩展,以满足设计需要。PLC通过COM口与工控机相连,与组态王KingView软件结合,实现计算机监控操作功能。硬件构成简图如图2。



3.软件分析

待清洗油管经传输线进入热洗池内管架,与池内清洗液充分接触,进行热交换,油管内外壁溶化、剥离,上浮至清洗液表面。油管被链提升装置提出至液面以上,进行次控水。控水完毕后仍经链提升装置提升至通径传输线一。通径传输线一正转,将油管送至内壁冲洗机,进行内壁冲洗。冲洗完毕后通径传输线一反转,油管后退至通径传输线一下料感应器,通径下料翻板动作,将油管翻至通径传输线二。通径下料翻板回位后,控水气缸动作,进行二次控水。控水完毕后,通径传输线二正转,将油管传输通过外壁冲洗机,进行外壁清洗。完毕后出料,完成一根油管的清洗作业。PLC编程思路如图3。



由于整个系统监控点数多,画面复杂,自行设计软件周期较长、难度较大,所以上位机采用国内的组态软件—组态王KingView6.01进行编写。组态王是运行于bbbbbbs98/NT/XP的全中文界面的组态软件,采用了多线程、COM组件等新技术,充分利用了bbbbbbs的图形编辑功能,能方便地构成监控画面,具有丰富的设备驱动程序、灵活的组态方式和数据链接功能,用其构造监控系统能大大缩短开发时间,并能保证系统的质量。组态王与PLC之间通信采用的是PPI通讯协议。组态王通过串行口与PLC进行通信,访问PLC相关的寄存器地址,以获得PLC所控制设备的状态或修改相关寄存器的值。在实际编程过程中不需要编写读写PLC寄存器的程序,组态王提供了一种数据定义方法,在定义了I/O变量后,可直接使用变量名用于系统控制、操作显示、趋势分析、数据记录和报警显示。

根据监控的实际要求,设计的软件实现了下述功能:工艺流程进行动画显示,可以直观的看出各条传输线、水泵、电机的运转情况,以及热洗池内油管数量和班产量。此外,针对不同的操作人员,设置不同的系统操作权限及密码,并给予系统操作帮助等等。系统控制界面如图4。



4.结束语

本文作者点:设计运用组态王和PLC进行通讯,具有时效性好、速度快、性高、运行稳定、调节灵活等优点。系统人机界面友好而直观,具有一定的灵活性,易于扩充。设计于2001年竣工投产,现已正常运转5年,整个系统运行平稳,。特别是PLC和组态王软件技术的结合应用,使得生产中自动化程度大大提高,降低了工人的劳动强度,了较好的实际使用效果。


在工业现场控制领域,可编程控制器(PLC)一直起着重要的作用。随着国家在供水行业的投资力度加大,水厂运行自动化水平不断提高,PLC在供水行业应用逐步增多。触摸屏与PLC配套使用,使得PLC的应用加灵活,同时可以设置参数、显示数据、以动画等形势描绘自动化过程,使得PLC的应用可视化。

    变频恒压供水成为供水行业的一个主流,是保证供水管网在恒压状态的重要手段。现代变频器完善的网络通信功能,为电机的同步运行,远距离集中控制和在线监控等提供了必要的支持。通过与PLC连接的触摸屏,可以使控制加形象、直观,操作加简单、方便。

    组合应用PLC、触摸屏及变频器,采用通信方式对变频器进行控制来实现变频恒压供水。

    变频恒压供水系统主要由PLC、变频器、触摸屏、压力变送器、动力及控制线路以及泵组组成。用户可以通过触摸屏了解和控制系统的运行,也可以通过控制柜面板上的指示灯和按钮、转换开关来了解和控制系统的运行。通过安装在出水管网上的压力变送器,把出口压力信号变成4~20mA或0~10V标准信号送入PLC内置的PID调节器,经PID运算与给定压力参数进行比较,输出运行频率到变频器。控制系统由变频器控制水泵的转速以调节供水量,根据用水量的不同,PLC频率输出给定变频器的运行频率,从而调节水泵的转速,达到恒压供水。PLC设定的内部程序驱动I/O端口开关量的输出来实现切换交流接触器组,以此协调投入工作的水泵电机台数,并完成电机的启停、变频与工频的切换。通过调整投入工作的电机台数和控制电机组中一台电机的变频转速,使系统管网的工作压力始终稳定,进而达到恒压供水的目的。

    该系统有手动和自动两种运行方式。手动方式时,通过触摸屏或控制柜上的启动和停止按钮控制水泵运行,可根据需要分别控制1#~3#泵的启停,该方式主要供设备调试、自动有故障和检修时使用。自动运行时,由1#水泵变频运行,变频器输出频率从0HZ上升,同时PID调节器把接收的信号与给定压力比较运算后送给变频器控制。如压力不够,则频率上升到50HZ,由PLC设定的程序驱动I/O端口开关量的输出来实现切换交流接触器组,使得1#泵变频切换为工频,2#泵变频启动,若压力仍达不到设定压力,则2#泵由变频切换成工频,3#泵变频启动;如用水量减少,PLC控制从先起的泵开始切除,同时根据PID调节参数使系统平稳运行,始终保持管网压力。

    若有电源瞬时停电的情况,则系统停机,待电源恢复正常后,人工启动,系统自动恢复到初始状态开始运行。变频自动功能是该系统基本的功能,系统自动完成对多台泵的启动、停止、循环变频的全部操作过程。

    在进行通信之前对PLC、触摸屏和变频器的通讯参数进行正确设置。本系统定义为Modbus协议,波特率为9600,数据位为8,无校验,停止位为1。变频器除设置通信参数外,还需启用“自由停车”以保护电机。

    该系统采用三菱FX-200的PLC,继电器输出,PLC编程采用三菱PLC的编程软件,软件提供完整的编程环境,可进行离线编程、在线连接和调试。为了提高整个系统的性价比,该系统采用可编程控制器的开关量输入输出来控制电机的起停、自动投入、定期切换,供水泵的变频及故障的报警等,而且通过PLC内置的PID给定电机的转速、设定压力、频率、电流、电压等模拟信号量。 以往的变频恒压供水系统在水压高时,通常采用停变频泵,再将变频器以工频运行方式切换到正在以工频运行的泵上进行调节。这种切换的方式理论上要比直接切换工频的方式,但其容易引起泵组的频繁起停,从而减少设备的使用寿命。而在该系统中采用直接停工频泵的运行方式,同时由变频器调节,只要参数设置合适,即可实现泵组的无冲击切换,使水压过渡平稳,有效的防止了水压的大范围波动及水压太低时的短时间缺水的现象,提高了供水品质。

PLC控制系统设计与调试的一般步骤

(一)分析被控对象并提出控制要求

      详细分析被控对象的工艺过程及工作特点,了解被控对象机、电、液之间的配合,提出被控对象对PLC控制系统的控制要求,确定控制方案,拟定设计任务书。

(二)确定输入/输出设备

      根据系统的控制要求,确定系统所需的全部输入设备(如:按纽、位置开关、转换开关及各种传感器等)和输出设备(如:接触器、电磁阀、信号指示灯及其它执行器等),从而确定与PLC有关的输入/输出设备,以确定PLC的I/O点数。

(三)选择PLC

      PLC选择包括对PLC的机型、容量、I/O模块、电源等的选择,详见本章二节。

(四)分配I/O点并设计PLC外围硬件线路

      1.分配I/O点

      画出PLC的I/O点与输入/输出设备的连接图或对应关系表,该部分也可在2步中进行。

      2.设计PLC外围硬件线路

      画出系统其它部分的电气线路图,包括主电路和未进入PLC的控制电路等。

      由PLC的I/O连接图和PLC外围电气线路图组成系统的电气原理图。到此为止系统的硬件电气线路已经确定。

(五)PLC程序设计

      1. 程序设计

      根据系统的控制要求,采用合适的设计方法来设计PLC程序。程序要以满足系统控制要求为主线,逐一编写实现各控制功能或各子任务的程序,逐步完善系统的功能。除此之外,程序通常还应包括以下内容:

      1)初始化程序。在PLC上电后,一般都要做一些初始化的操作,为启动作必要的准备,避免系统发生误动作。初始化程序的主要内容有:对某些数据区、计数器等进行清零,对某些数据区所需数据进行恢复,对某些继电器进行置位或复位,对某些初始状态进行显示等等。

      2)检测、故障诊断和显示等程序。这些程序相对立,一般在程序设计基本完成时再添加。

      3)保护和连锁程序。保护和连锁是程序中不可缺少的部分,认真加以考虑。它可以避免由于非法操作而引起的控制逻辑混乱,。

      2. 程序模拟调试

      程序模拟调试的基本思想是,以方便的形式模拟产生现场实际状态,为程序的运行创造必要的环境条件。根据产生现场信号的方式不同,模拟调试有硬件模拟法和软件模拟法两种形式。

      1)硬件模拟法是使用一些硬件设备(如用另一台PLC或一些输入器件等)模拟产生现场的信号,并将这些信号以硬接线的方式连到PLC系统的输入端,其时效性较强。

      2)软件模拟法是在PLC中另外编写一套模拟程序,模拟提供现场信号,其简单易行,但时效性不易保证。模拟调试过程中,可采用分段调试的方法,并利用编程器的监控功能。

(六)硬件实施

      硬件实施方面主要是进行控制柜(台)等硬件的设计及现场施工。主要内容有:

      1) 设计控制柜和操作台等部分的电器布置图及安装接线图。

      2)设计系统各部分之间的电气互连图。

      3)根据施工图纸进行现场接线,并进行详细检查。

      由于程序设计与硬件实施可同时进行,因此PLC控制系统的设计周期可大大缩短。 

(七)联机调试

      联机调试是将通过模拟调试的程序进一步进行在线统调。联机调试过程应循序渐进,从PLC只连接输入设备、再连接输出设备、再接上实际负载等逐步进行调试。如不符合要求,则对硬件和程序作调整。通常只需修改部份程序即可。

      全部调试完毕后,交付试运行。经过一段时间运行,如果工作正常、程序不需要修改,应将程序固化到EPROM中,以防程序丢失。

微型计算机是在以往计算机与大规模集成电路的基础上发展起来的,其大特点是运算速度快,功能强,应用范围广,在科学计算,科学管理和工业控制中都得到广泛应用。所以说,MC是通用计算机。而PLC是一种为适应工业控制环境而设计的计算机。但人工业控制的角度来看,PLC又是一种通用机,只要选配对应的模块便可适用于各种工业控制系统,而用户只需改变用户程序即可满足工业控制系统的具体控制要求。而MC就根据实际需要考虑抗干扰问题及硬件软件的设计,以适应设备控制的专门需要。所以说MC是通用的机。

    基于以上理解,便可以得出MC与PLC具有以下几点区别:

    (1)PLC抗干扰性能为MC高

    (2)PLC编程比MC编程简单

    (3)PLC设计调试

    (4)PLC的I/0响应速度慢,有较大的滞后现象(MS),而MC的响应速度快(US)。

    (5)PLC易于操作,人员培训时间短;而MC则较难人员培训时间长;

    (6)PLC易于维修,MC则较困难

    随着PLC技术的发展,其功能越来越强;同时MC也逐渐提高和改进两者之间将相互渗透,使PLC与MC的差距越来越小,但在今后很长一段时间内,两者将继续共存。在一个控制系统中,PLC将集中于功能于功能控制上,而MC将集中于信息处理上


1引言

    目前,我国绝大部分矿井提升机(过70%)采用传统的交流提升机电控系统(tkd-a为代表)。tkd控制系统是由继电器逻辑电路、大型空气接触器、测速发电机等组成的有触点控制系统。经过多年的发展,tkd-a系列提升机电控系统虽然已经形成了自己的特点,然而其不足之处也显而易见,它的电气线路过于复杂化,系统中间继电器、电气接点、电气联线多,造成提升机因电气故障停车事故不断发生。采用plc技术的新型电控系统都已较成功的应用于矿井提升实践,并了较好的运行经验,克服了传统电控系统的缺陷,代表着交流矿井提升机电控技术发展的趋势。

    2总体设计方案

    基于plc技术的矿井交流提升机电控系统控制电路组成结构如图1所示,要由以下5部分组成:高压主电路(包括高压换向器、电动机、启动柜、动力制动电源)、主控plc电路、提升行程检测与显示电路、提升速度、提升信号电路,其中高压主电路部分仍采用传统的继电器控制电路。

    工作过程:当井口或井底通过信号通信电路发出开车信号后,开车条件具备。司机将制动手柄向前推离紧闸位置,主电动机松闸。司机将主令控制器的操作手柄推向正向(或反向)端位置,主控plc通过程序控制高压换向器得电,使高压信号送入主电动机定子绕组,主电动机接入全部转子电阻启动,然后依次切除8段电阻,实现自动加速,后运行在自然机械特性上。交流提升机运行时,旋转编码器跟随主电动机转动,输出2列a/b相脉冲,分别接到主控plc的高速计数器hsc0的a/b相脉冲输入端,由主控plc根据a/b脉冲的相位关系,自动确定hsc0的加、减计数方式。根据hsc0的计数值,就可以计算出提升行程并显示。同时只根据旋转编码器输出的a相脉冲,主控plc进行加计数。根据hsc1在恒定间隔时间内的计数值,就可以计算出提升速度。

    3硬件设计

    3.1提升机主回路部分设计

    主回路用于供给提升电动机电源,实现失压、过流保护,控制电机的转向和调节转速。主回路由高压开关柜、高压换向器的常开触头、动力制动接触器的常开主触头、动力制动电源装置、提升电动机、电机转子电阻、加速接触器的常开主触头(1jc~8jc)和装在司机操作台上的指示电流表和电压表等组成。系统原理图如图2所示。

    主拖动电机选择:鼠笼式异步电动机尽管结构简单、价格、维护方便,但很难满足提升机启动和调速性能的要求,因此,矿井提升机交流拖动系统均选用绕线式异步电动机作为主拖动电动机,绕线式异步电动机转子串电阻后能限制启动电流和提高启动转矩,并能在一定范围内进行调速。地面变电所送来的二路6kv电源,一路工作,一路备用,经tgg-6型高压开关柜的隔离开关glk1、油开关gyd、高压换向器线路接触器xlc的主触头、正向(或反向)接触器zc(或fc)后到主电机的定子。在高压开关柜内还设有电压互感器yh,失压服扣线圈syq,电流互感器lh和过流脱扣线圈glq,用于失压或过流保护。在syq线圈回路中还串联接有紧急停车开关jtk1和换向器室栏栅门闭锁开关lsk。

    3.2制动回路设计

    矿井提升机大多数采用绕线式异步电动机来拖动,且多数场合下采用有级切换转子回路电阻来实现调速。其制动系统多采用可控硅动力制动和可调闸制动系统。前者为电气制动,后者为机械制动。提升机在减速段运行中,当速度在0~5%范围内,电气制动起作用,可调闸不起作用;当速在5%~10%范围内,电气制动限幅,并维持大制动功率,同时可调闸起作用,总制动力矩增大;当速10%时,过速继电器gsj1作用于回路,可调闸将提升机滚筒闸住。

    晶闸管动力电源装置主要有两部分组成,一部分为主回路,另一部分为触发回路。本文设计中采用kzg型三相可控硅动力制动系统。此系统为单闭环动力制动系统,系统方框图如图3所示,从图中可以看出速度偏差控制和脚踏控制是“或”的关系,哪个信号大,就允许哪个信号通过,亦即相应的控制方式发挥作用。因此,单闭环控制时司机可以脚踏制动进行控制,而在脚踏控制时,如提升机速,闭环系统又可起监视保护作用。

    3.3速度给定回路

    速度给定方式就是按行程原则产生速度给定信号。在矿井提升机电控系统中,通常是采用凸轮板给定方法,即由凸轮板控制自整角机的输出电压。由于自整角机没有可滑动的触点,因此电压变化较平稳,工作较,维护量较小。原理图如图4所示。

    自整角机作为给定装置应用时是将激磁绕组通以单相110伏交流电,在三相同步绕组中任取两相的输出作为给定电压的输出。其输出电压为交流,如需要直流则应通过桥式整流输出。

    3.4动力制动回路

    晶闸管整流器及其触发装置成套地装在电源柜中,动力制动电源装置输出电压的大小与触发装置输入的控制信号电压的高低有关。

    控制信号电压由两个回路组成一个或门电路,如图5所示。只要其中之一达到触发要求时,即可使晶闸管触发起制动作用。这两个回路,一个是由实际速度与给定速度形成的速度偏差值,自动控制cf3磁放大器的输出和动力制动输出,另一条回路由司机控制自整角机cd2的输出以实现人工调节。

    在人工控制动力制动系统时,由司机控制脚踏板带动自整角机cd2发生控制电压。调整时应使其与磁放大器cf3的输出相配合。当脚跟刚刚踩下,脚尖尚未下踏时,相当于控制开关闭和,使dzc得电吸合,晶闸管动力制动投入,但此时自整角机cd2输出很小,动力制动电流小。当司机脚尖踏下后,自整角机cd2输出大。

    在脚踏动力制动与cf3输出回路中,分别由z1和z2两个二管组成一个或门电路,此两种控制信号成并联关系,互不影响。

    3.5行程检测与显示

    利用旋转编码器将提升机的运行位置转化为脉冲,plc对此脉冲进行高速计数,通过相应的计算自动生成提升机位置的相关数据,传送到plc内部高速计数器的存储单元。为了提高计数器的脉冲精度,选用日本omron公司的e6c-cwsc型可逆旋转编码器,其脉冲准确精度高,在低速时不会丢失脉冲。

    为了便于提升机司机操作,提升机电控系统需设置的行程显示装置(又称深度指示器)用于显示提升容器在井筒中的位置。本文设计根据编码器所测的运行距离(0~570m),采用3个led七段显示器作为提升机位置的显示。

    3.6辅助回路设计

    辅助回路是用于对辅助设备进行供电和控制的。辅助回路的电源电压为交流380v,两回路供电。辅助回路所带负荷有:晶闸管动力制动电源装置、制动油泵电动机、润滑油泵电动机等。

    4提升机主电动机转子电阻计算

    电动机转子电阻的计算,对提升设备的正常运转有着重要的作用。进行启动电阻计算时,应确定预备级级数和加速级级数。因为所选的级数直接影响到大切换力矩的增大或减小及平均启动加速度的提高或降低,甚至由于过载能力不够而需加大电动机容量,故应考虑,选出经济合理的级数。一般情况下,预备级级数和加速级级数的选择见附表所示。


    三相平衡启动电阻的计算方法很多,但基本上可分为两种类型:一类是按给定加速度来计算启动电阻,另一类是以充分利用电动机的过载能力为出发点来计算。因类方法计算简便准确,故本文中采用此方法计算。

    5plc控制系统设计

    5.1主控plc控制电路设计

    根据提升机的运行方式和煤矿企业的固有特点,国产矿井提升机电控制系统中应用plc也发展很快。但从现场使用情况来看,目前,在国产煤矿提升机控制系统中,plc主要用于处理开关量,以替代老式提升机控制系统中众多的继电器、接触器、复杂的连线以及信号显示系统,而涉及到提升机运行的制动系统中的模拟量和自动调节过程,大多还是通过用半导体器件、运算放大器等可调闸和可控硅动力制动的普通电子模式来处理。使用过程中经常会出现零点移、电子元件损坏,并且存在维修及重新调试难、性差等缺点,因而使提升机电控系统的性降低。针对上述问题,深入研究用plc控制煤矿提升机控制系统是非常必要的。

    本文中主控单元可编程序控制器(plc)设计,由一个cpu226主机和两片i/o扩展模块em223和em222组成,设计含有40个输入点40个输出点,则具体i/o接线如图7所示。

    5.2plc控制软件设计

    plc控制软件主程序流程图如图8所示。

    (1)初始化子程序用于对高速计数器hsc0和hsc1进行以下操作:写控制字,定义工作模式,清零,写设定值,设置定时中断,连接中断,启动计数。

    (2)制动油泵、润滑油泵、动力制动电源、五通阀电磁铁、四通阀电磁铁和阀电磁铁等的控制属于交流提升机运行所需辅助设备的控制。

    (3)制动油过压信号、制动油过热信号和润滑油过压信号的显示控制用于交流提升机工作状态的显示控制。

    (4)调绳闭锁回路是在调绳过程中起保护作用。双卷简提升机换水平调绳时,调绳转换开关1hk-3断开,使调绳连锁环节串入回路。正常运行时,lhk-3接通,调绳连锁不起作用。

    (5)提升信号回路用于对交流提升电动机启动或减速作好准备。

    (6)位置测程序用于测量提升机在矿井中的位置。

    (7)行程显示子程序根据旋转编码器的脉冲个数来显示当前的行程位置。

    (8)减速信号回路和减速信号铃用于减速控制并且发出铃声提示信号。

    (9)自动换向工作回路和手动正反转工作回路分别用于自动和手动方式下对交流提升电动机进行正反转控制。

    (10)回路用于防止和避免交流提升机发生意外事故。

    (11)定时器控制回路和转子电阻通断控制用于交流提升电动机启动或减速时的转子电阻切换控制。

    (12)动力制动回路用于动力制动电源的投入与切除控制。

    (13)脚踏制动联锁和工作闸继电器用于交流提升电动机制动控制。

    6结束语

    提升机的控制系统采用plc控制与tkd-a控制系统结合的方式,具有、、实现方便等优点。采用plc实现提升机主要控制逻辑,增加控制功能,实现自动化生产。其关键是充分发挥plc的优势,利用其综合测控机制,解决好测速、保护等问题,实现与原系统的良好衔接,提高系统的综合性能,达到高产出。从系统的应用情况看仍存在一些需进一步完善的问题如:网络通信功能和控制技术及策略如智能控制等,在现有plc技术的基础上进一步进行功能扩充,将会进一步提高我国矿井提升电控系统的现代化水平

PLC控制系统在使用过程中,经常要修改一些参数,常见的就是修改定时器的设定值。为了操作员方便修改定时器的设定值,可用下列方法来实现:

    1、使用人机界面

    PLC可以用触摸屏、文本显示器或工控机作人机界面,方便修改定时器参数,但成本较高。

    2、使用PLC内置的模拟电位器

    小型PLC一般都有内置的设置参数用的模拟电位器。如三菱PLCFX1N、FX1S的外部调节寄存器D8030和D8031的值与模拟电位器的位置相对应。S7-200的两个模拟电位器对应的寄存器是SMB28和SMB29。CP1H的模拟电位器对应的寄存器A642。

    3、用模拟量设定功能扩展板修改定时器的设定值

    FX系列的模拟量设定功能扩展板FX2N-8AV-BD上有8个电位器,可以用应用指令VRRD读出各电位器设定的8位二进制数,用定作定时器、计数器的设定值。

    4、用PLC外部触点在程序内作加减计数器实现设定定时器的设定值

    用按钮的上升沿与加减计数器实现。当按下按钮,加减计数器的寄存器加1或减1。而定时器的设定值就是寄存器中的数值。根据需要与定时器的基时要确定按下的次数。加计数与减计数的外部接点要分开。

    5、增加LCD选件板改变PLC内部定时器的设定值

    可以方便的监控、变PLC内数据值,并可以实现错误状态的可视化。CP1H、CP1L的PLC可以增加LCD选件板CP1W-DAM01。

提高PLC自动控制系统性的方法,如下:

一、控制系统性降低的主要原因

虽然工业控制机和可编程技术'>控制器本身都具有很高的性,但如果输入给PLC的开关量信号出现错误,模拟量信号出现较大偏差,PLC输出口控制的执行机构没有按要求动作,这些都可能使控制过程出错,造成无法挽回的经济损失。影响现场输入给PLC信号出错的主要原因有:1、造成传输信号线短路或断路(由于机械拉扯,线路自身老化,连接处松脱等),当传输信号线出故障时,现场信号无法传送给PLC,造成控制出错。2、机械触点抖动,现场触点虽然只闭合一次,PLC却认为闭合了多次,虽然硬件加了滤波电路,软件增加微分指令,但由于PLC扫描周期太短,仍可能在计数、累加、移位等指令中出错,出现错误控制。3、现场变送器,机械开关自身出故障,如触点接触不良,变送器反映现场非电量偏差较大或不能正常工作等,这些故障同样会使控制系统不能正常工作。影响执行机构出错的主要原因有:

1、控制负载的接触不能动作,虽然PLC发出了动作指令,但执行机构并没按要求动作。

2、控制变频器起动,由于变频器自身故障,变频器所带电机并没按要求工作。

3、各种电动阀、电磁阀该开的没能打开,该关的没能关到位,由于执行机构没能按PLC的控制要求动作,使系统无法正常工作,降低了系统性。要提高整个控制系统的性,提高输入信号的性和执行机构动作的准确性,否则PLC应能及时发现问题,用声光等报警办法提示给操作人员,尽除故障,让系统、、正确地工作。


二、设计完善的故障报警系统

在自动控制系统的设计中我们设计了3级故障显示报警系统,1级设置在控制现场各控制柜面板,用指示灯指示设备正常运行和故障情况,当设备正常运行时对应指示灯亮,当该设备运行有故障时指示灯以1Hz的频率闪烁。为防止指示灯灯泡损坏不能正确反映设备工作情况,专门设置了故障复位/灯测试按钮,系统运行任何时间持续按该按钮3s,所有指示灯应全部点亮,如果这时有指示等不亮说明该指示灯已坏,应立即换,改按钮复位后指示灯仍按原工作状态显示设备工作状态。2级故障显示设置在控制室大屏幕监视器上,当设备出现故障时,有文字显示故障类型,工艺流程图上对应的设备闪烁,历史事件表中将记录该故障。3级故障显示设置在控制室信号箱内,当设备出现故障时,信号箱将用声、光报警方式提示工作人员,及时处理故障。在处理故障时,又将故障进行分类,有些故障是要求系统停止运行的,但有些故障对系统工作影响不大,系统可带故障运行,故障可在运行中排除,这样就大大减少整个系统停止运行时间,提高系统性运行水平。


三、输入信号性研究

要提高现场输入给PLC信号的性,要选择性较高的变送器和各种开关,防止各种原因引起传送信号线短路、断路或接触不良。其次在程序设计时增加数字滤波程序,增加输入信号的可信性。数字信号滤波可采用如下程序设计方法,在现场输入触点后加一定时器,定时时间根据触点抖动情况和系统要的响应速度确定,一般在几十ms,这样可保证触点确实稳定闭合后,才有其它响应。

模拟信号滤波可采用如下程序设计方法,对现场模拟信号连续采样3次,采样间隔由A/D转换速度和该模拟信号变化速率决定。3次采样数据分别存放在数据寄存器DT10、DT11、DT12中,当后1次采样结束后利用数据比较、数据交换指令、数据段比较指令去掉大和小值,保留中间值作为本次采样结果存放在数据寄存器DT0中。

在实际应用之中,工具情况还以延长采样的次数,以达到较好的效果。提高读入PLC现场信号的性还可利用控制系统自身特点,利用信号之间关系来判断信号的可信程度。如进行液位控制,由于储罐的尺寸是已知的,进液或出液的阀门开度和压力是已知的,在一定时间里罐内液体变化高度大约在什么范围是知道的,如果这时液位计送给PLC的数据和估算液位高度相差较大,判断可能是液位计故障,通过故障报警系统通知操作人员该液位计。

又如各储罐有上下液位限保护,当开关动作时发出信号给PLC,这个信号是否真实,在程序设计时我们将这信号和该罐液位计信号对比,如果液位计读数也在限位置,说明该信号是真实的;如果液位计读数不在限位置,判断可能是液位限开关故障或传送信号线路故障,同样通过报警系统通知操作人员处理该故障。由于在程序设计时采用了上述方法,大大提高了输入信号的。

四、执行机构性研究

当现场的信号准确地输入给PLC后,PLC执行程序,将结果通过执行机构对现场装置进行调节、控制。怎样保证执行机构按控制要求工作,当执行机构没有按要求工作,怎样发现故障?我们采取以下措施:当负载由接触器控制时,启动或停止这类负载转为对接触器线圈控制,启动时接触器是否吸合,停止时接触器是否释放,这是我们关心的。

我们设计了如下程序来判断接触器是否动作。X0为接触器动作条件,Y0为控制线圈输出,X1为引回到PLC输入端的接触器辅助常开触点,定时器定时时间大于接触器动作时间。R0为设定的故障位,R0为ON表示有故障,做报警处理;R0为OFF表示无故障。故障具有记忆功能,由故障复位按钮。

当开启或关闭电动阀门时,根据阀门开启、关闭时间不同,设置延时时间,经过延时检测开到位或关到位信号,如果这些信号不能按时准确返回给PLC,说明阀可能有故障,做阀故障报警处理。程序设计如下所述。X2为阀门开启条件,Y1为控制阀动作输出,定时器定时时间大于阀开启到位时间,X3为阀到位返回信号,R1为阀故障位。另外,一般的开关输出都有中间继电器,多于比较重要的控制可以使用中间继电器的其他辅助触点向PLC反馈动作信息。




http://zhangqueena.b2b168.com

产品推荐