产品描述
厦门西门子一级代理商电源供应商
一、概述
今天,的工业自动化动力、控制和信息系统解决方案供应商罗克韦尔自动化的集成架构产品和解决方案已经在冶金、电 力、水处理、乳品饮料、、水泥、石化、矿山、汽车制造等各个行业得到成功的应用和广泛的认同,其控制系统、软件、变频器在 冶金各工艺生产中的应用举不胜数。宣钢炼钢车间的2座80t炼钢转炉、LF精练炉、2台连铸机及辅助布袋除尘器等工艺设施的测控全部采 用了ControlLogix系统,工程于2002年5月18日顺利投产。据我们所知,这是ControlLogix系统在国内炼钢转炉上的应用。
近年来,随着炼钢转炉自动化程度的提高,随着生产性、性要求的提高,随着全厂调度管理网络自动化的提高,的 、开放的控制系统在生产中得到越来越广泛的应用。
宣钢新建炼钢车间的测控系统在初期的方案设计定论后即开始系统、的招标,在的四大控制系统厂商:ABB、Siemens、 Schneider、罗克韦尔自动化参与激烈竟标的情况下,罗克韦尔自动化的ControlLogix以其的配置、良好的性能价格比脱颖而出,博 得评委的一致青睐,终中标。
二、系统简介
2.1.控制系统配置
转炉控制系统配置:每座转炉本体、散状加料、余热锅炉、烟气净化各用1台PLC及操作站,转炉本体公用部分、鼓风机房、煤气 回收输配各用1台PLC及1台操作站。1#、2#转炉各设1台服务器。转炉控制系统配置如<图一>所示。
控制系统联接网络共有四层:1.设备网(DeviceNet/ProfiBUS);2.控制网(冗余ControlNet);3.厂级管理网(EtherNet/IP );4.局域网(EtherNet/IP),该网设置于转炉主控室,以便转炉主控室2座转炉的10台操作站务器的联网使用。
现场设备联接的设备网有DeviceNet、ProfiBus,如氧变频器、煤气鼓风机6KV中压变频器直接通过设备网卡与PLC通讯。
所有1#/2#转炉及公用部分PLC、操作站、服务器之间采用(ControlNet)冗余控制网连为一体,实现PLC、操作站、数据 共享、实时交换。
连铸机、精炼炉同转炉一样,采用立的ControlLogix控制系统。厂级管理网(EtherNet/IP)将转炉、连铸机、LF精炼炉控制 系统的服务器与厂级管理机、调度机相连接,实现主要生产、能源数据相互交换,为厂级管理和调度人员产生调度、决策数据。
转炉各操作站、服务器采用DELL中配置商用计算机。服务器、操作站系统平台为bbbbbbs2000(服务器/客户版)。操作站上 位软件为RSView32,PLC组态软件为RSLogix5000,网络组态软件RSLinx(Control Net/DeviceNet)等。转炉本体操作画面如<图二>所示。
1#/2#转炉在主控室分别设置一台服务器,服务器用于网络管理、用户登陆控制,生产数据的管理、报表的打印,上位管理网的 通讯、工程师的软件开发及维护使用等。为实现ERP功能奠定基础。在生产中服务器也可作为操作站使用。
2.2.控制系统特点
代表自动化发展新趋势的新一代ControlLogix控制系统,从传统单纯的PLC和DCS控制转为PLC和DCS融合发展的方式,是罗克韦尔 自动化顺应这种发展潮流推出的新一代的控制平台,Logix控制器平台是将高速离散控制、过程控制、协调传动控制、运动控制、批次控 制和控制融于一体的一个控制平台。允许混合使用多个处理器、多种网络和I/O。系统灵活性强、易于集成、模块化设计、开放式结 构,特有的升级固件,使得系统在应用中功能强大、,而且大地节省培训费用和工程实施费用。
ControlLogix在宣钢转炉过程控制中应用的技术,具有下述特点:
1. 控制器:每台Logix5555控制器大寻址量128000点DI/O,4000点AI/O及回路。ControlLogix平台通过背板提供了高速。各控制 器能产生(广播)和使用(接收)系统标签,这种技术使得多个控制器共享输入信息和输出状态,非常实用。可选用户内存(1.5Mb)。
2. 1756系列智能I/O模块:I/O模块种类繁多,可拆卸端子,具有带电拔插、分变则报()、自诊断、时间标记、模块标识、闪存升级、电 子保险、单隔离等功能。模块广播数据的速率可设定。1756-HSC高速计数模块(4通道)每2ms就能新数据,。
3. 网络设置:网络分层、分工明确、。控制网ControlNet冗余、开放、高速、实时、对等传送数据信息,ControlNet能够预 测数据何时发送,具有高度的确定性。设备网DevicelNet,是一种开放式的底层通用网络,基于标准的CAN技术,具有互操作性。成本及 维护。
4. 罗克韦尔软件:是罗克韦尔自动化公司自行开发推出的产品,具有世界工业界的水平。RSLogix5000梯形图编程软件包,有灵活易用 的编辑功能、通用的操作画面、诊断和纠错工具。RSView32是高度集成、基于组件的人机界面,发挥微软技术优势的软件,其 开放性与三方程序有高度兼容性。RSLinx为现场设备连接罗克韦尔自动化产品的通讯软件,界面友好、功能强大,支持不同网络上的 设备通讯。
2.3.控制系统主要功能及效果
控制系统完成1#/2#转炉本体、散状加料、汽化冷却、烟气净化及公用部分、煤气鼓风机房、煤气回收输配等工艺的生产参数的 在线检测、数据处理运算、显示、存储、管理、控制输出、报表打印、记录操作过程等功能。程序全自动时,设备由计算机控制,操作 人员可通过人机对话修改设定值、可直接控制设备运行。
转炉吹氧及介质控制、转炉低吹数模控制、转炉散状加料控制、二文喉口开度调节、汽包液位调节等全自动控制等在任何转 炉生产车间都是较难控制的工艺对象,而宣钢转炉控制系统,加以特的程序处理,这些工艺对象控制得非常理想,其中转炉/底吹气 体压力或流量可以控制在设定值的3%以内,转炉喉口差压可以控制在6Pa以内,这些数据与兄弟单位相比,处于地位。
三、应用推广
的控制系统是一个现代化工厂的标志,对于企业有着深远的社会效益和经济效益。ControlLogix系统在宣钢转炉及整个炼钢 车间的成功使用,不论生产测控,还是厂级生产调度管理,都达到的水平。为宣钢节约了能源、降低了成本、减少了操作人员 ,提高了生产的性,提高了产品的合格率、生产率。炼钢车间自2002年5月18日投产后,一个星期即达产。半年的生产时间,使宣钢 创下了的历史产量及经济效益。经与甲方交流,估计由控制系统良好使用带来的效益每月至少增加200万元(人民币)。
“尽管许多自动化公司都声称能够向客户提供自动化设备及解决方案,但我们认为只有罗克韦尔自动化公司和及其代理商雄越公 司做得!”宣钢炼钢厂自动化车间樊主任说:“他们有的产品技术、雄厚的技术力量、良好的售后服务,我们与他们合作是 佳的选择,在未来的项目中我们将继续采用他们的产品技术。”
宣钢80吨转炉的投产,尤其是控制系统,成为了兄弟单位参观学习的样例工程。山东青岛钢厂(80t转炉)、珠海粤裕丰钢厂 (2x65t转炉)、承德钢厂(3x100t转炉)等单位在考查完宣钢80吨转炉项目后,已确定炼钢车间控制系统全部采用ControlLogix,项目正在 实施中,在不久的明年我们又可以看到多的ControlLogix系统在炼钢车间的成功应用。
参考文献:
[1] ControlLogix选型指南
作者简介:
杜成业,包头钢铁设计研究院自动化所工作,工程师,从事工业自动化的设计、开发工作。宣钢转炉控制系统三电编程、调 试项目负责人。
兰波,包头钢铁设计研究院自动化所工作,工程师,从事电气自动化的设计、开发工作。宣钢转炉控制系统电气编程、 调试负责人。
2 卧式车床模块化设计
根据市场调查、技术预测,我们充分考虑了卧式车床应用的范围以及产品的生命力,进行了车床品种规格的规划和模块的划分。将主轴箱、进给箱、架、尾架等不同功能的部件分成八组功能单元,即八个模块组。相同功能单元不再是单一部件,而是具有不同用途或性能的不同结构,但功能和结合要素相同的一系列可以互换的模块。例如主轴箱模块组有基本变速范围主轴箱、单速主轴箱等七种不同性能用途的主轴箱模块,可以进行互换;又如架模块组有转位架、立轴式转塔等六种不同用途和结构的架模块。程序控制模块是立的增强功能的模块,作为提高机床自动化水平的预设模块,目的是增加产品的生命力。这八组模块进行合适的换可以组合成几十种不同使用性能的车床,以适应市场的变化和用户的不同需要。
我们在卧式车床的模块化设计时遵循了以下几个原则:
(1)分离原则:将机床分离为能满足多种需要、性能合理的八组模块。卧式车床设计的模块具体划分如下:
①主轴箱:基本变速范围主轴箱、小变速范围主轴箱、大变速范围主轴箱、可调变速范围主轴箱、单速主轴箱、卧式双轴主轴箱、立式双轴主轴箱。
②进给机构:进给与车螺纹机构、无螺纹机构、单速进给机构、金刚石镗孔用桥座、双架用快速行程机构、快速行程机构。
③架:双架、形架、转位架、立轴式转塔、回轮式架。
④尾架:机械式尾架、气动尾架、液压尾架、钻孔用尾架、双轴尾架。
⑤夹紧装置:气动夹紧装置、液压夹紧装置、电磁夹紧装置。
⑥床身:普通床身、双架用床身。
⑦自动送料架
⑧程序控制器
(2)统一原则:将模块统一为具有合理尺寸、符合我国规定的普通车床尺寸系列。例如为了适合各种主轴箱宽度尺寸不同的情况,将床身宽度尺寸按系列分为:普通床身、双架用床身。
(3)联接原则:设计各模块之间的接口要素同一,以确保模块间的装配精度和联接刚度,以及模块重复使用时的性。
(4)适应原则:为了好地发挥模块化构造的经济效果,模块化设计技术趋向于同模块群的跨类模块化构造。卧式车床、卧式铣床和立式钻床尤为适合跨类模块化,图2为相同模块群的跨类构造示意图。因此,为了能满足将模块任意组合成所需机床,设计时采用尽可能不详细区分模块的机床构造方法。
3 程序控制器设计
我们在卧式车床的模块化设计中采用的可编程控制器取代继电器控制,以实现单机自动化。可编程控制器是微电子技术和微计算机技术的新成果,具有性高、抗干扰性强、编程灵活方便、对环境要求低、体积小、结构紧凑、便于安装等优点。本设计采用三菱公司生产的F1—60MR可编程控制器,分别对相应模块进行控制接口设计和程序设计。在模块拼装成机床时,将有关模块控制接口及其控制程序组装起来,形成卧式车床整体控制系统。
下面就立轴式转塔架模块为例介绍可编程控制器的控制设计。
(1)立轴式转塔架进给系统工作原理
立轴式转塔架的工作过程是架的顺序回转使完成各工位的加工。其进给系统是采用液压系统实现转塔架的快速进退、工作进给、架转位、架的抬起和锁紧。
(2)可编程控制器的控制原理及接口设计
控制采用手动和自动二种方式,启动自动循环后可自动实现工作过程。整个进给系统有前进和后退两个方向的位置控制和加速进退、工作进给快速退出等多种速度的控制。需要可编程控制器的输入点19个(对应X400—X506),输出点12个(对应Y430—Y533)。输入端分别接来自卧式车床操纵箱的按钮和床体行程开关,输出控制信号控制液压控制系统的各类电磁阀的动作,以实现立轴式转塔架的工作。
1 引言
在工业自动化生产中,差压变送器用于压力压差流量的测量,得到了非常广泛应用,在自动控制系统中发挥重要的作用。随着石化、钢铁、造纸、食品、企业自动化水平的不断提高,差压变送器的应用范围越来越广泛,生产中遇到的问题也越来越多,加之安装、使用、维护人员的水平差异,使得出现的问题不能解决,一定程度上影响了生产的正常进行,甚至危及生产,因此对现场仪表维护人员的技术水平提出了高要求。
2 工作原理与故障诊断
2.1差压变送器工作原理
来自双侧导压管的差压直接作用于变送器传感器双侧隔离膜片上,通过膜片内的密封液传导至测量元件上,测量元件将测得的差压信号转换为与之对应的电信号传递给转换器,经过放大等处理变为标准电信号输出。差压变送器的几种应用测量方式:
(1) 与节流元件相结合,利用节流元件的前后产生的差压值测量液体流量,如图1所示。
(2) 利用液体自身重力产生的压力差,测量液体的高度,如图2所示。
(3) 直接测量不同管道、罐体液体的压力差值,如图3所示。
差压变送器的安装包括导压管的敷设、电气信号电缆的敷设、差压变送器的安装。
2.2差压变送器故障诊断
变送器在测量过程中,常常会出现一些故障,故障的及时判定分析和处理,对正在进行了生产来说是至关重要的。我们根据日常维护中的经验,总结归纳了一些判定分析方法和分析流程。
(1)调查法。回顾故障发生前的打火、冒烟、异味、供电变化、雷击、潮湿、误操作、误维修。
(2)直观法。观察回路的外部损伤、导压管的泄漏,回路的过热,供电开关状态等。
(3)检测法。
·.断路检测:将怀疑有故障的部分与其它部分分开来,查看故障是否消失,如果消失,则确定故障所在,否则可进行下一步查找,如:智能差压变送器不能正常Hart远程通讯,可将电源从仪表本体上断开,用现场另加电源的方法为变送器通电进行通讯,以查看是否电缆是否叠加约2kHz的电磁信号而干扰通讯。
·.短路检测:在保证的情况下,将相关部分回路直接短接,如:差变送器输出值偏小,可将导压管断开,从一次取压阀外直接将差压信号直接引到差压变送器双侧,观察变送器输出,以判断导压管路的堵、漏的连通性。
·替换检测:将怀疑有故障的部分换,判断故障部位。如:怀疑变送器电路板发生故障,可临时换一块,以确定原因。
·分部检测:将测量回路分割成几个部分,如:供电电源、信号输出、信号变送、信号检测,按分部分检查,由简至繁,由表及里,缩小范围,找出故障位置。
3 典型故障案例
3.1导压管堵塞
以正导压管堵塞为例来分析导压管堵塞出现的故障现象。在仪表维护中,由于差压变送器导压管排放不及时,或介质脏、粘等原因,容易发生正负导压管堵塞现象,其表现特征为:变送器输出下降、上升或不变。当增加时,对变送器(变送器本身进行输出信号开方)输出的影响:
设原流量为F1, P1= P1+- P1- ,F’1=K ,F’1为变化前的变送器输出值,
设增加后的为F2,(即:F2> F1), P2= P2+- P2- ,F’2=K ,F’2为增加后的变送器输出值。
由于正压管堵塞,则当实际流量分别为F1、F2时,P1+= P2+;
当增加时,P2-出现如下变化:因为实际增加为F2,则与原流量F1时相比,管道内的静压力也相应增加,设增加值为P0,同时P2- 因管道中流体流速的增加而产生的静压减小,减小值为P0΄,此时P2-与P1- 的关系为:
P2- = P1-+ P0- P0΄
则: P2= P2+- P2- = P1+-( P1-+ P0- P0΄)= P1+( P0΄-P0)
则: F’现=K = K
这样:
当 P0=P0΄时 则:F’2=K =K F’2= F’1 变送器输出不变。
当 P0>P0΄时 则: F’2=K =K ,F’2< F’1,变送器输出变大。
当 P0<P0΄时 则: F’2=K =K ,F’2> F’1 ,变送器输出变小。
当流量减小时,对变送器(变送器本身进行输出信号开方)输出的影响。
设原流量为F1, P1= P1+- P1- ,F’1=K ,F’1为变化前的变送器输出值。
设减小后的流量为F2,(即:F2> F1), P2= P2+- P2- ,F’2=K ,F’2为流量减小后的变送器输出值。
由于正压管堵塞,则当实际流量分别为F1、F1时,P1+= P2+;
当实际流量由F1减小到F2时,管道中的静压也相应的降低,设降低值为P0;同时,当实际流量下降至F2时,P2-值也要因为管内流体流速的降低而升高,设升高值为P0’。
此时,P2-与P1-的关系为:-
P2-= P1-- P0+ P0’
P2= P2+- P2-= P1+-( P1-- P0+ P0’)= P1+( P0- P0’)
F’2=K = K
这样:
当 P0=P0΄时 则:F’2=K =K F’2= F’2 变送器输出不变;
当 P0>P0΄时 则: F’2=K =K ,F’2> F’1,变送器输出变大;
当 P0<P0΄时 则: F’2=K =K ,F’2< F’1 ,变送器输出变小。
一般情况下,导压管的堵原因主要是由于测量导压管不定期排污或测量介质粘稠、带颗粒物等原因造成。
3.2导压管泄漏
以正导压管泄漏来分析导压管泄漏出现的故障现象。如图1所示,莱钢集团公司某加热炉仪表控制阀用净化风总管线的流量测量方式为:节流孔板+差压变送器。装置生产正常时的用风流量基本是稳定的,但在后期的生产过程中发现用风流量比正常值下降了很多。
经过检查,二次仪表(DCS)组态及电信号回路工作正常,变送器送检定室标定正常,于是怀疑问题出现出导压上,经过检查,由于正导压管焊接不好造成泄漏所至,经过补焊堵漏后,流量测量恢复正常。
下面我们分析正导压管泄漏时反映出的故障现象。
正导压管泄漏的现象是:变送器输出下降、上升及不变
分析:
当流量上升时,对变送器(变送器本身进行输出信号开方)输出的影响
设原流量为F1, P1= P1+- P1- ,F’1=K ,F’1为变化前的变送器输出值,
设增加后的实际流量为F2,(即:F2>F1),F’2=K ,F’2为增加后的变送器输出值。
因增加,管道静压增加为P0,随着流速的增大,实际压管静压减小为P0΄,正压管泄漏降压下降为Ps
则:P2+= P1++P0-Ps,P2- = P1- +P0- P0΄
P2= P2+- P2- = P1+( P0΄ - Ps)
那么
当:P0΄=Ps 正压导管泄漏,而流量上升时,变送器输出不变
当:P0΄>Ps 正压导管泄漏,而流量上升时,变送器输出增加
当:P0΄<Ps 正压导管泄漏,而流量上升时,变送器输出减小
当流量下降时,对变送器(变送器本身进行输出信号开方)输出的影响
设下降后的实际流量为F2,即:F2<F1,F’2=K , F’2为流量减小后的变送器输出值。
因流量下降,管道静压下降值P0,同时由于流体流速下降,负压管静压增加P0΄,正压管泄漏降压下降为Ps
则:P2+= P1+-P0-Ps,P2- = P1- -P0+ P0΄
P2= P2+- P2- = P1-( Ps + P0’)
F’2=K =K
即:当流量下降时,变送器输出总是小于实际流量。
实际上,当泄漏量非常小的时候,由于种种原因,工艺操作或仪表维修护人员很难发现,只有当泄漏量大,所测流量与实际流量相比有较大误差时才会发现,这时即使是实际流量上升,总是P0’ <<Ps,
即: P2<< P1,
F’2<<F’1
上述仪表控制阀用净风管线的流量测量就这属于这种情况。
3.3 平衡阀泄漏
设流量为F, P1= P1+- P1- ,F’1=K ,F’1为平衡阀泄漏前的变送器(带开方)输出值
我们设管道内流体流量在没有变化的情况下做分析
设泄漏的压力为PS,
则:泄漏后的正负导压管的静压为:
P2+= P1+-PS,P2-= P1-+ PS
P2= P2+- P2- = P1-2 PS,则
F’2=K = K
即:F’2<F’1,变送器测量输出小于实际流量值
3.4气体流量导压管积液情况下的变送器测量误差
由于气体流量取压方式不对或导压管安装不符合要求(与水平成不小于1:12的斜度连续下降) 时,常常造成导压管内部积存液体的现象。这种现象的出现,往往会致使测量不准,如果在变送器量程很小的情况下,甚至会造成变送器输出的一些波动。
如图4,莱钢大型1#1880高炉的煤气流量测量系统,系统为节流孔板+差变送器,取压方式为环室取压,煤气流动方向为向下,放空方式为考虑,设为集中式排放。
本测量系统刚投用时工作正常,运行一段时间以后,测得的流量逐渐变大,放空后正常,工作一段时间后,测得的流量又逐渐变大。
经过检查,二次仪表(DCS)组态及电信号回路工作正常,变送器送检定室标定正常,用侧漏仪表查双侧导管正常。经过分析,为煤气脱水干燥不净,煤气中含水,由于液体自上而下流动,部分水聚集于孔板正压测,并逐渐沿正压导压管流动集中至下端,造成正负导压管中积液高度不一至,差压变送器测量出现正向误差,显示为增大。
分析:
设正导压管取压点压力为P+,负导压管取压点压力为P-,差压变送器正端压力为P+΄,差压变送器负端压力为P-΄。
P= P+- P-
P’= P+΄- P-΄
正常测量下:
P= P΄
设正常测量状态下的流量为F,则 F=K
这里 K为常系数。
设液体水的密度为ρ,则在正导压管积液高度为h+,负导压管积液高度为h-的情况下:
P+΄= P++ρgh+
P-΄= P-+ρgh-
P΄= P+΄- P-΄= P++ρ h+-( P-+ρ h-)= P+ρ (h+-h-)
则变送器输出为:
F΄=K
当h+>h-时 变送器实际测得的差压增大,输出信号变大,
当h+<h-时 变送器实际测得的差压减小,输出流量信号变小,
即:变送器测量输出的流量信号与实际流量不符,产生测量误差。
这里,由于正压导管取压方式的原因,随着时间的增加,h+逐渐大于h-,测得的也增大。
经过典型故障案例,对使用差压变送器的测量回路由于导压管原因造成回路测量故障做了一些分析,这几种故障都是在仪表设备维护中非常常见的,通过分析可以看到,无论是导压管堵塞、还是导压管中积水,同样的故障,其表征出来的现象有时并不同,所以我们在分析问题时应该是辩证的,具体情况具体分析。
4 结束语
以上我们探讨了差压变送器的安装方法、注意事项及差压变送器测量回路故障
1 引言
在工业自动化生产中,差压变送器用于压力压差流量的测量,得到了非常广泛应用,在自动控制系统中发挥重要的作用。随着石化、钢铁、造纸、食品、企业自动化水平的不断提高,差压变送器的应用范围越来越广泛,生产中遇到的问题也越来越多,加之安装、使用、维护人员的水平差异,使得出现的问题不能解决,一定程度上影响了生产的正常进行,甚至危及生产,因此对现场仪表维护人员的技术水平提出了高要求。
2 工作原理与故障诊断
2.1差压变送器工作原理
来自双侧导压管的差压直接作用于变送器传感器双侧隔离膜片上,通过膜片内的密封液传导至测量元件上,测量元件将测得的差压信号转换为与之对应的电信号传递给转换器,经过放大等处理变为标准电信号输出。差压变送器的几种应用测量方式:
(1) 与节流元件相结合,利用节流元件的前后产生的差压值测量液体流量,如图1所示。
(2) 利用液体自身重力产生的压力差,测量液体的高度,如图2所示。
(3) 直接测量不同管道、罐体液体的压力差值,如图3所示。
差压变送器的安装包括导压管的敷设、电气信号电缆的敷设、差压变送器的安装。
2.2差压变送器故障诊断
变送器在测量过程中,常常会出现一些故障,故障的及时判定分析和处理,对正在进行了生产来说是至关重要的。我们根据日常维护中的经验,总结归纳了一些判定分析方法和分析流程。
(1)调查法。回顾故障发生前的打火、冒烟、异味、供电变化、雷击、潮湿、误操作、误维修。
(2)直观法。观察回路的外部损伤、导压管的泄漏,回路的过热,供电开关状态等。
(3)检测法。
·.断路检测:将怀疑有故障的部分与其它部分分开来,查看故障是否消失,如果消失,则确定故障所在,否则可进行下一步查找,如:智能差压变送器不能正常Hart远程通讯,可将电源从仪表本体上断开,用现场另加电源的方法为变送器通电进行通讯,以查看是否电缆是否叠加约2kHz的电磁信号而干扰通讯。
·.短路检测:在保证的情况下,将相关部分回路直接短接,如:差变送器输出值偏小,可将导压管断开,从一次取压阀外直接将差压信号直接引到差压变送器双侧,观察变送器输出,以判断导压管路的堵、漏的连通性。
·替换检测:将怀疑有故障的部分换,判断故障部位。如:怀疑变送器电路板发生故障,可临时换一块,以确定原因。
·分部检测:将测量回路分割成几个部分,如:供电电源、信号输出、信号变送、信号检测,按分部分检查,由简至繁,由表及里,缩小范围,找出故障位置。
3 典型故障案例
3.1导压管堵塞
以正导压管堵塞为例来分析导压管堵塞出现的故障现象。在仪表维护中,由于差压变送器导压管排放不及时,或介质脏、粘等原因,容易发生正负导压管堵塞现象,其表现特征为:变送器输出下降、上升或不变。当增加时,对变送器(变送器本身进行输出信号开方)输出的影响:
设原流量为F1, P1= P1+- P1- ,F’1=K ,F’1为变化前的变送器输出值,
设增加后的为F2,(即:F2> F1), P2= P2+- P2- ,F’2=K ,F’2为增加后的变送器输出值。
由于正压管堵塞,则当实际流量分别为F1、F2时,P1+= P2+;
当增加时,P2-出现如下变化:因为实际增加为F2,则与原流量F1时相比,管道内的静压力也相应增加,设增加值为P0,同时P2- 因管道中流体流速的增加而产生的静压减小,减小值为P0΄,此时P2-与P1- 的关系为:
P2- = P1-+ P0- P0΄
则: P2= P2+- P2- = P1+-( P1-+ P0- P0΄)= P1+( P0΄-P0)
则: F’现=K = K
这样:
当 P0=P0΄时 则:F’2=K =K F’2= F’1 变送器输出不变。
当 P0>P0΄时 则: F’2=K =K ,F’2< F’1,变送器输出变大。
当 P0<P0΄时 则: F’2=K =K ,F’2> F’1 ,变送器输出变小。
当流量减小时,对变送器(变送器本身进行输出信号开方)输出的影响。
设原流量为F1, P1= P1+- P1- ,F’1=K ,F’1为变化前的变送器输出值。
设减小后的流量为F2,(即:F2> F1), P2= P2+- P2- ,F’2=K ,F’2为流量减小后的变送器输出值。
由于正压管堵塞,则当实际流量分别为F1、F1时,P1+= P2+;
当实际流量由F1减小到F2时,管道中的静压也相应的降低,设降低值为P0;同时,当实际流量下降至F2时,P2-值也要因为管内流体流速的降低而升高,设升高值为P0’。
此时,P2-与P1-的关系为:-
P2-= P1-- P0+ P0’
P2= P2+- P2-= P1+-( P1-- P0+ P0’)= P1+( P0- P0’)
F’2=K = K
这样:
当 P0=P0΄时 则:F’2=K =K F’2= F’2 变送器输出不变;
当 P0>P0΄时 则: F’2=K =K ,F’2> F’1,变送器输出变大;
当 P0<P0΄时 则: F’2=K =K ,F’2< F’1 ,变送器输出变小。
一般情况下,导压管的堵原因主要是由于测量导压管不定期排污或测量介质粘稠、带颗粒物等原因造成。
3.2导压管泄漏
以正导压管泄漏来分析导压管泄漏出现的故障现象。如图1所示,莱钢集团公司某加热炉仪表控制阀用净化风总管线的流量测量方式为:节流孔板+差压变送器。装置生产正常时的用风流量基本是稳定的,但在后期的生产过程中发现用风流量比正常值下降了很多。
经过检查,二次仪表(DCS)组态及电信号回路工作正常,变送器送检定室标定正常,于是怀疑问题出现出导压上,经过检查,由于正导压管焊接不好造成泄漏所至,经过补焊堵漏后,流量测量恢复正常。
下面我们分析正导压管泄漏时反映出的故障现象。
正导压管泄漏的现象是:变送器输出下降、上升及不变
分析:
当流量上升时,对变送器(变送器本身进行输出信号开方)输出的影响
设原流量为F1, P1= P1+- P1- ,F’1=K ,F’1为变化前的变送器输出值,
设增加后的实际流量为F2,(即:F2>F1),F’2=K ,F’2为增加后的变送器输出值。
因增加,管道静压增加为P0,随着流速的增大,实际压管静压减小为P0΄,正压管泄漏降压下降为Ps
则:P2+= P1++P0-Ps,P2- = P1- +P0- P0΄
P2= P2+- P2- = P1+( P0΄ - Ps)
F’2=K =K
那么
当:P0΄=Ps 正压导管泄漏,而流量上升时,变送器输出不变
当:P0΄>Ps 正压导管泄漏,而流量上升时,变送器输出增加
当:P0΄<Ps 正压导管泄漏,而流量上升时,变送器输出减小
当流量下降时,对变送器(变送器本身进行输出信号开方)输出的影响
设下降后的实际流量为F2,即:F2<F1,F’2=K , F’2为流量减小后的变送器输出值。
因流量下降,管道静压下降值P0,同时由于流体流速下降,负压管静压增加P0΄,正压管泄漏降压下降为Ps
则:P2+= P1+-P0-Ps,P2- = P1- -P0+ P0΄
P2= P2+- P2- = P1-( Ps + P0’)
F’2=K =K
即:当流量下降时,变送器输出总是小于实际流量。
实际上,当泄漏量非常小的时候,由于种种原因,工艺操作或仪表维修护人员很难发现,只有当泄漏量大,所测流量与实际流量相比有较大误差时才会发现,这时即使是实际流量上升,总是P0’ <<Ps,
即: P2<< P1,
F’2<<F’1
上述仪表控制阀用净风管线的流量测量就这属于这种情况。
3.3 平衡阀泄漏
设流量为F, P1= P1+- P1- ,F’1=K ,F’1为平衡阀泄漏前的变送器(带开方)输出值
我们设管道内流体流量在没有变化的情况下做分析
设泄漏的压力为PS,
则:泄漏后的正负导压管的静压为:
P2+= P1+-PS,P2-= P1-+ PS
P2= P2+- P2- = P1-2 PS,则
F’2=K = K
即:F’2<F’1,变送器测量输出小于实际流量值
3.4气体流量导压管积液情况下的变送器测量误差
由于气体流量取压方式不对或导压管安装不符合要求(与水平成不小于1:12的斜度连续下降) 时,常常造成导压管内部积存液体的现象。这种现象的出现,往往会致使测量不准,如果在变送器量程很小的情况下,甚至会造成变送器输出的一些波动。
如图4,莱钢大型1#1880高炉的煤气流量测量系统,系统为节流孔板+差变送器,取压方式为环室取压,煤气流动方向为向下,放空方式为考虑,设为集中式排放。
本测量系统刚投用时工作正常,运行一段时间以后,测得的流量逐渐变大,放空后正常,工作一段时间后,测得的流量又逐渐变大。
经过检查,二次仪表(DCS)组态及电信号回路工作正常,变送器送检定室标定正常,用侧漏仪表查双侧导管正常。经过分析,为煤气脱水干燥不净,煤气中含水,由于液体自上而下流动,部分水聚集于孔板正压测,并逐渐沿正压导压管流动集中至下端,造成正负导压管中积液高度不一至,差压变送器测量出现正向误差,显示为增大。
分析:
设正导压管取压点压力为P+,负导压管取压点压力为P-,差压变送器正端压力为P+΄,差压变送器负端压力为P-΄。
P= P+- P-
P’= P+΄- P-΄
正常测量下:
P= P΄
设正常测量状态下的流量为F,则 F=K
这里 K为常系数。
设液体水的密度为ρ,则在正导压管积液高度为h+,负导压管积液高度为h-的情况下:
P+΄= P++ρgh+
P-΄= P-+ρgh-
P΄= P+΄- P-΄= P++ρ h+-( P-+ρ h-)= P+ρ (h+-h-)
则变送器输出为:
F΄=K
当h+>h-时 变送器实际测得的差压增大,输出信号变大,
当h+<h-时 变送器实际测得的差压减小,输出流量信号变小,
即:变送器测量输出的流量信号与实际流量不符,产生测量误差。
这里,由于正压导管取压方式的原因,随着时间的增加,h+逐渐大于h-,测得的也增大。
经过典型故障案例,对使用差压变送器的测量回路由于导压管原因造成回路测量故障做了一些分析,这几种故障都是在仪表设备维护中非常常见的,通过分析可以看到,无论是导压管堵塞、还是导压管中积水,同样的故障,其表征出来的现象有时并不同,所以我们在分析问题时应该是辩证的,具体情况具体分析。
4 结束语
以上我们探讨了差压变送器的安装方法、注意事项及差压变送器测量回路故障的诊断,实际上,由于压力变送器与差压变送器测量应用上的相通性原因,本文中有些方法也同样适用于压力变送器的安装和故障诊断。
产品推荐