6
金华西门子中国代理商CPU供应商
1 前言
随着科学技术的发展及制造技术的进步,社会对产品多样化的需求越来越强烈,产品的新换代周期也越来越短,中小批量生产的比重明显增加,从而对制造设备提出了高的要求。为满足市场的需要,要求制造设备具有率、高质量、高柔性及的性能,数控机床作为一种自动化的加工设备而被广泛采用。同时,随着现代机械制造业向高层次的发展,数控机床也必将成为柔制造单元(FMC)、柔制造系统(FMS)以及计算机集成制造系统(CIMS)的基础装备。计算机数控系统作为制造形状复杂、高质量、产品所的基础设备,己成为当今制造技术的一个重要组成部分。
PLC(Programmable Logic Controller)可编程逻辑控制器是20世纪60年代末期逐步发展起来的一种以计算机技术为基础的新型工业控制装置。PLC作为计算机技术应用于工业控制领域的崭新产品,也是开放式数控系统中不可缺少的重要组成部分。它在处理开关量的控制问题时起着重要作用。现代的数控机床一般可分为机床床体(MT)、NC和PLC三部分。数控机床中NC和PLC协调配合共同完成对数控机床的控制,其中NC主要完成管理调度及轨迹控制等“数字控制”工作,PLC主要完成与逻辑有关的一些动作,如的换、工件的夹紧及冷却液润滑液的开停。PLC技术在各种工业过程控制、生产自动线控制中得到为广泛的应用,成为工业自动化领域中的一项十分重要的应用技术。
在数控机床上有两类控制信息:一类是控制机床进给运动坐标轴的位置信息,如数控机床工作台的前、后、左、右移动;主轴箱的上、下移动和围绕某一直线轴的旋动位移量等。这些控制是用插补计算出的理论位置与实际反馈位置比较后得到的差值,对伺服进给电机进行控制而实现的。这种控制的作用就是保证实现加工零件的轮廓轨迹,除点位加工外,各个轴的运动之间随时随刻都保持严格的比例关系。这类数字信息是由CNC系统(计算机)进行处理的,即“数字控制”。另一类是数控机床运行过程中,以CNC系统内部和机床上各行程开关、传感器、按钮、继电器等开关量信号的状态为条件,并按照预先规定的逻辑顺序,对诸如主轴的开停、换向,的换,工件的夹紧、松开,液压、冷却、润滑系系统的运行控制。这一类控制信息主要是开关量信号的顺序控制,一般由 PLC来完成。
2 精密切割数控机床的功能分析
精密切割数控机床是通过数控系统以数字方式控制的运动以实现对工件的切削,在编写数控车削加工程序时,并不考虑。在加工前,用户将的 X轴补偿量、Z轴补偿量、尖圆弧半径、尖形式共四种补偿参数输入数控系统,由数控系统根据程序,进行补偿运算。这四种参数中,尖形式按数控系统的规定予以确认,尖圆弧半径可由R规测量,而的X,Z轴补偿量的测量则相对困难一些,使用自动对仪能很好地解决这个问题,为此,数控机床及加工大多配置了各种不同类型的对装置,如机外对仪、机内光学对仪、接触式自动对装置等。由于车削对一般的数控车床夹持标准化程度不高,因此采用机外对仪的对精度相对较低,而且机外对仪成本较高,操作复杂,需要专门的操作空间,所以实用性较差。而采用机内接触式自动对装置无疑是一种简便、快捷的对方法,它能方便地自动测量的固定补值,大大减少对时间,提高机床的加工效率。所以本文旨在设计一种机内接触式的数控车床,实现数控车削前的精密对,提高生产率,降低加工成本。需要解决的问题主要有以下方面:自动对仪需有的电子测头(传感器),能够准确在触发点触发,有较快的反映时间;对仪的测头与尖刚性接触,需加缓冲装置,对测头表面保护,压力需控制在1~10MPa左右,这样才不会对传感器的测头造成损坏,形成凹坑;系统能利用机床本身的位置测量装置进行测量,通过对不同尖触发点坐标(X,Z)的记录,可以方便地得到一组坐标值,分析计算后便可确定各补值; 安装和固定对仪的装置(联接臂)应达到相应精度要求,满足平行度与垂直度要求,且要有较好的刚度和易操作性。
3 精密切割数控机床总体设计
对精密切割的功能,主要需保证切割精度,因此要求对数据机床的主要部件一一传感器的精度得到保证,传感器的作用是感知和检测某一形态的信息,并将其转换成另一形态的信息,将被测量(尖位置这个物理量)按照一定的规律转换成可用输出信号(电流、电压)表示的物理量。 精密切割的数控机床传感器由以下几部分组成:
在本文中,传感器的选用应有相当的精度,完成以下功能:1)、实现对X轴和Z轴两个方向的传感,对仪要得到X轴和Z轴的坐标值,使不同在相同的点触发传感器,进而运用机床数控系统的功能再结合编程实现该点坐标值的。实际上传感器要完成的功能是一个开关量,不同的在相同点触发即可。 2)、由于偏角的不同,传感器不能做成X轴向和Z轴向相互垂直的两对传感器,这样对Z向坐标的时候,得到的尖点可能不是真实的尖点坐标。
本文采用的是机械式开关传感器,用机械触发的方式得到一个开关量的输出,当尖与传感器触发并行进到预设位置时,电路接通得到触发信号。机械式传感器相对来说精度是差一些,但只要设计合理,也能将误差控制在合理的范围内。另一方面,可自行设计以兼顾偏角的不同和传感器的大小及联接方式。此种传感器简单适用,成本较低,具有很大的市场推广。
4 PLC与数控系统编程
NUM1020/1040数控系统是NUM于1995年开发出的全新数控系统,是紧凑且功能完善的32位数控系统,并且和NUM1060系列系统兼容。它特别适合于1~6轴的数控机床,其硬件特点如下:采用CISC( 大规模集成电路)技术的GSP主板;主板上连接可插接(分离的)小模板,由于考虑到数控系统和系统外部的联系,NUM把和外界联系的功能模块制造成可插接小模块,便于用户将来的维护。具体分为轴模块、显示模块和通讯模块;NUM1020/1040采用+24VDC为其电源输入,由于数控系统是弱电电路,采用+24VDC为电源输入,可以大大降低其热源和不稳定因素的影响。用户可以把+24VDC稳压电源放在电气柜内,大大提高了整个数控系统的性;PLC功能的内部集成,PLC功能的内部集成化,提高了PLC和 CNC的内部通讯能力,增强了数控机床的逻辑控制;PLC的32输入和24输出模块,NUM的32输入和24输出模块可以和外围的电路相连接,而这种模块通过NUM提供的电缆和NUM数控系统连接,提高了整个机床的性。(如果有问题,只能损坏这种模块,不会对数控系统造成损坏);光纤技术的通讯,PLC输入输出点的扩展,通过光纤进行连接,简化了线路的连接;轴转接模块,机床的编码器和到伺服的线路可以直接联到此模块上,并通过它和数控系统的轴板进行连接,提高了数控系统的性。另外,NU M的轴连接和其它数控系统不同,NUM的轴模块连接此轴的所有信息(如编码器、速度信号、回零开关)。如果机床的轴有问题,可以直接把轴模块上的插头相对换,就能很快地查出问题所在(系统内部或外部);轻巧实用的紧凑型操作面板。其上显示器和计算机的CRT有可兼容性,与NC相通的功能键共有47个,有6个用户自由定义键及串行通讯接口,可以连接PC的键盘(直接插拔)。
按照设计要求,当传感器检测到信号时,数控系统的程序并未监控,此时是不能记录尖坐标值进行数据处理的。先使进给电机停下来,等候操作者发出指令,然后进行下一步的操作。所以应该通过PLC的控制来实现这一功能,将Q001.0和Q001.1两个端子分别与两两个进给电机相连,实现单控制。其次,传感器共有四个测头,但对进给电机的控制都是一样的:任何一个传感器得到信号都使相应的电机同时停下来,然后进行相应的数据处理。
数控机床的传感器得信号后通过接口电路传给PLC,PLC将得到的信号通过交换区与CNC进行数据的传输,CNC将信息运算处理后再传递到PLC中,PLC控制X向电机和Z向电机运动。数控系统与传感器的接口电路如图2所示:
如图所示为PLC的接线示意图,将%I001.0、%I001.1、%I001.2、%I001.3 四个输入口分别与四个传感器相连,然后再与 COM口连接。传感器得到信号后,相当于开关闭合,由原先的+24VDC电压跳变为零,从而给PLC的相应的输入端口一个信号。输出口%Q001.0控制 X方向进给电机的使能,%Q001.1控制Y方向进给电机的使能。
NUM1060CNC是一种多功能、多处理器的系统,它提供与数控机床连接的各种自动控制功能。用梯形图语言编制的自动控制功能包括安装在机床上的传感器和执行机械以及与CNC的数据交换。自动控制功能设置在处理单元之中,它包括一块或多块功能卡,CNC通过它们实现图形显示,自动控制和信息存储功能。CPU与系统的数据交换可以分为二种类型:通过交换区的通讯和通过协议的通讯。
自动控制功能由一个监督程序进行管理,它包括处理初始化,将输入/输出点分配到不同的框架以及输人输出接口和监视器的管理等多种基本任务。监控程序与用户程序一起对系统进行整体的监督管理。用户程序是在监督程序控制下受一个20ms周期的实时时钟(RTC)支配循环运行的。
机床处理器的存储器空间安排如下:
(1) 有备份功能(掉电保持)的32K静态RAM。
(2) 在电源接通是复位(清零)的32K动态RAM。
(3) 机床处理器(1MB V1)的用户程序使用的180KB动态RAM。
(3) 机床处理器(4MB V1)的用户程序使用的2.5MB动态RAM。
(3) 机床处理器(4MB V2)的用户程序使用的3.5MB动态RAM。
(6) UCSII模块上的用户程序使用的64KB动态RAM。
自动控制功能如下:
(1) 对DACs(12位)直接存取。
(2) 对ADCs和输入/输出点间接读和写存取,这种存取是经由虚拟存储空间(每20ms刷新)实现的。
5 点总结
本文的点是针对数控车床对切割中,对时间长、精度差这一问题,设计了精密切割数控车床,通过对尖位置的捕捉运用NUM数控系统自身的测量装置得到了尖点的坐标,经过计算将不同相对于标准的位置偏差得出并再存入数控系统,实现了自动对,有效地提高了对的效率和精度,具有可推广性。可为生产效率的提高,制造成本的降低起到积的作用。
1 前言
当车辆驱动电机采用分散驱动时, 受电机转速不同步的影响, 可导致车体运行不协调, 进而使电机转速偏离正常值, 严重时会造成设备损坏。因此,解决车辆驱动电机在分散驱动时产生的电机转速不同步问题具有现实意义。
本文介绍一种利用PLC 解决车辆分散驱动时电机速度同步的实用的控制方法。
2 问题的提出
目前, 车辆的运行设备一般采用集中驱动( 见图1) 和分散驱动( 见图2) 两种方式。集中驱动变频器与电机的关系是“一拖多”; 分散驱动时两者的关系是“一拖一”。
3 解决方法
采用PLC 与变频器控制方法, 实现多个分散驱动电机同步运行。PLC 采用西门子S7400 系列, 图3为网络拓扑图。
4 控制结果
利用STEP7 编制PLC 上位机监控程序,Wincc采集速度值并绘制曲线。数据提取的时间间隔为15ms。实际上牵引电机1 和牵引电机2 速度是相同的, 但为了反映牵引电机2 的跟踪和波动情况, 在此特地将其分开, 上面是牵引电机1 的速度曲线, 下面是牵引电机2 的速度曲线( 见图4) 。牵引电机1 的速度发生变化时, 牵引电机2 就能及时地响应, 进行跟踪, 并且能很快地达到稳定。实验表明, 采用PLC 和变频器的控制方法, 能达到较高的同步要求, 响应快、速度波动幅度较小。
5 结束语
该控制方法已在各种炉下车辆中应用。实际应用中, 走行同步起动效果明显, 车辆运行平稳。实践证明, 采用PLC 解决车辆分散驱动时电机速度同步的控制方法应用效果较好, 是一种理想的调速控制方法, 满足了生产工艺要求, 减少了设备的维修维护费用, 保了车辆发挥正常的生产效率, 经济效益显著。随着PLC 与变频器控制方法的广泛应用, 必将好地提高传动系统对速度控制的性与灵活性。
电气控制的方式大致分为以下几种:
1.用普通继电器搭建有自锁和互锁功能的双回路线路。这种是原始的控制方式,能达到较低的等级。其优点是廉,缺点是维护和改造十分复杂,无法监控。
2.使用继电器搭建回路。上个世纪随着继电器的出现,它已经越来越多的应用于各种工业设备中。可以用于控制单一功能,适用于小型的控制系统。其输出通常有继电器触点输出或晶体管输出。无论采用何种形式的输出结构,继电器都能够保证至少2个通道进行输出的控制。在一个输出通道出现故障的情况下,另外一个冗余的通道依然能够保证继电器的功能,并且及时出故障通道。常见的继电器有皮尔兹、施迈赛等,现在西门子、欧姆龙等系统集成商也都相继推出了自己的继电器产品。此控制方式成本适中,能达到较高的等级,但如果元件多线路依然比较复杂,不适于大型生产线。
3.使用PLC进行控制。可编程控制器的CPU采用冗余的多处理器结构。各个处理器之间相互监控,一旦出现不一致,立刻使控制器处于状态,并且发出报警信息;同时,可编程控制器对内部的RAM,EPROM,输入输出寄存器等元件进行实时监控,并且采用特殊的测试脉冲对输入信号和输出被控元件进行,一旦出现任何不隐患,控制器立刻切换至保护状态。总线系统适用于大型、离散式的控制系统。其原理是在现有工业现场总线的基础上,采用了一系列的时间检测、地址检测、连接检测和CRC冗余校验等措施,达到高的等级。PLC是上世纪末出现的产品,他的优点是可编程性能强大,使用总线能实现很高要求的控制,但成本较高。
4.使用可编程继电器进行控制。可编程继电器是近年推出的产品,它介于PLC和继电器之间,即具有一定的可编程性,价格却不是很高。继电器是一个多功能、可自由配置的模块化系统。与其他普通继电器不同,可编程继电器的电路可在个人电脑上使用图形配置工具生成。通过基础模块上的RS232接口可以直接向可编程继电器写入程序。
1 引言
随着城市经济的腾飞,停车难已到了刻不容缓的地步。在的市,特别是宾馆、商场、购物等车辆集中的地区,只有向空中、向地下发展,建造相当数量的立体停车库已是。上海市机械设备成套集团科贸公司是一家专门从事机械式立体停车库生产设计的公司,受文定苑徐房(集团)物业管理公司的委托,建造机械式两层升降横移立体停车设备。
2 总体方案设计
根据业主的要求,通过实地考察,总体方案设计如图1所示:远程小区监控具有系统管理员功能,可查看车库泊位状态(即车位板上是否停有车辆),修改存取车辆的密码,并实时监控下位控制器的运行状态;设计两个存取车辆出入口(即东出入口和西出入口),可加快车主存取车辆的速度,在两个出入口处各放置一台触摸屏,车主输入操作密码即可存取自己的车辆;下位机为PLC,通过信号的输入输出,存取的车辆和车位板是否到位、故障等,并控制电机运转,完成车辆的存取工作。
行程开关判别横移车位板或升降车位板是否到位,泊位开关判别车位板上是否停有车辆,光电开关判别存入的车辆是否高、长,并有保护作用,接触器用来直接控制电机的运动,指示灯可方便车主根据信息灯状态—前进、后退、运行、故障等,方便存取车辆。
3 系统工作原理
如图2所示,以7个车位为例说明从上层3号车位板存(取)车工作原理:车主输入正确的存(取)车密码;下层4、6号车位板同时向右横移,6号横移至空位,4号横移至6号位,然后3号车位板下降至下层4号位;车主即可把自己车辆驶上(驶出)3号车位板,存(取)车完成后,延时60s,3号车位板自动上升至原来的位置,然后4、6号车位板复位。
每个横移车位板对应一个行程开关,开关状态为“1”时表示此时车位板到位,为“0”时表示车位板未到位,根据行程开关的状态可判别出横移车位板是否到位。每个升降车位板对应一个上定位行程开关和一个下定位行程开关,根据行程开关的状态可判别升降车位板的位置。自动运行过程中,根据行程开关的状态控制接触器触点的通断,进而控制电机的运行和停止。
泊位开关用来检测车位板上是否停有车辆,其实质是一个镜面反射的光电开关,工作原理是:该车位板上停有车辆时,泊位开关处于“1”状态;车位板上无车辆时,泊位开关处于“0”状态,根据泊位开关的状态可知PLC对应输入点的状态,远程小区监控上位计算机根据松下电工的通讯协议可读出PLC寄存器状态,从而监控立体停车库的泊位状态、停车状况等。
4 控制系统硬件设计
控制系统的是下位控制器PLC,松下FP1的控制器因其较高的性价比受到用户的青睐。
(1) FP1具有计算机bbbb功能,可由上位计算机根据MEWTOCOL-COM通讯协议,直接通过编程口RS422读取FP1中的接点信息和其数据寄存器中的内容,实现数据采集,监视运行状态的功能;同时RS232可直接与操作界面触摸屏进行通讯。
(2) 扩展方便、灵活,可根据输入输出的点数的多少选择主机CPU单元和扩展单元。
(3) 控制单元和扩展单元输出功能强大:各个“COM”端均为立的,可使用不同的电压;输出点额定控制能力强,为2A/250VAC或2A/30VDC,可直接控制接触器动作。
车库设置两个车辆出入口,主要目的是加快存取车辆的速度。系统配置时选用一个PLC,在东西出入口处各放置一台触摸屏,东出入口触摸屏和PLC距离约为 8m,所以直接通过RS232接口通讯;两个触摸屏之间的距离约为20m,选用RS485通讯接口。图3为其通讯接口协议接线图。
由于立体停车库领域的特殊性,对电机的要求很高,一般都采用三合一电机(即减速、制动、刹车为一体),本车库使用德国汉森电机,横移电机为0.25kW,升降电机为 2.2kW,规格为三相380V,通过接触器的通断直接控制电机的运行和停止,可以达到车位板的定位要求。
综合以上因素,根据I/O点数、输入输出信号特点、输出驱动能力、通讯等要求,选择FP1系列C72C继电器输出型PLC,扩展模块为继电器输出型E40(I 24/O 16),即可满足设计要求。
5 控制系统软件设计
本系统软件部分的是根据输入的存(取)车密码,对应的车位板运行到的位置。主要有四部分组成:(1)自动操作程序—根据车主输入的密码,对应的车位板运行,完成车辆的存取。(2)单步操作程序—按下按钮,执行一个车位板的完整动作。(3)手动操作程序—按钮按下时,车位板运动,直至车位板到位,否则停止,可方便维修、故障查找。(4)操作显示程序—在存(取)车过程中,应显示必要的提示信息,方便车主存(取)车;为方便维护人员,在系统故障时,应显示对应的故障代码。
所有实现上述功能的PLC软件程序采用步进结构,图4所示为软件流程图。
触摸屏的设计软件为 ADP3,要正确设置触摸屏的DIP开关和通讯参数,才能确保通讯的正常进行。东出入口的触摸屏为主站,通讯参数设置:人机界面站号为0,传输速率为 19200b/s,8位数据长、奇校验、1位停止位;与PLC连线所用的通讯端口为COM1,连线方式为“Multi-drop Master”,共用寄存器区为DT200,长度为32,共用接点区为R200,长度为0;画面控制区地址为DT10,画面状态区地址为DT20;延迟画面启动时间为3s。西出入口的触摸屏为辅站,通讯参数设置:人机界面站号为1,传输速率为19200b/s,8位数据长、奇校验、1位停止位;连线方式为 “Multi-drop Slave”,共用寄存器区为DT200,长度为32,共用接点区为R200,长度为0;画面控制区地址为DT12,画面状态区地址为DT18;延迟画面启动时间为0s。按照以上的参数设置及通讯接口接线,才能保证系统通讯的正常。
6 FP1系统寄存器参数设置
在软件设计时,为了保证PLC与上位监控计算机和触摸屏通讯正常,一定要注意PLC系统寄存器的参数设置。
与上位计算机有关的系统寄存器配置:(1)编程口站号参数NO.410设置为K1;(2)编程口通讯格式参数NO.411设置为H0。
与操作界面触摸屏有关的系统寄存器配置:(1)RS232C串口通讯方式参数NO.412设置为K1,表示RS232C串口用于计算机链接通讯;(2) RS232C串口通讯格式参数NO.413设置为K1,表示RS232C串口通讯传输格式为8位数据长、奇校验、1位停止位、CR为结束符;(3) RS232C串口波特率参数NO.414设置为K1,表示串口通讯波特率为19200b/s,同时应把PLC波特率选择开关设置为19200bps; (4)RS232C串口站号参数NO.415设置为K1。