系列S7-400
是否进口是
产品认证CE
结构形式:模块
安装方式:现场安装
功能:PLC/CPU
品牌西门子
西门子PLC模块S7-400代理商 西门子PLC模块S7-400总代理 西门子PLCS7-400代理商 西门子S7-400代理商 西门子PLCS7-400扩展模块代理商 西门子PLC通讯模块S7-400代理商
西门子SC62连接电缆西门子SC62连接电缆
西门子S7-400 PLC是用于中、性能范围的可编程序控制器。SIMATIC S7-400PLC的主要特色为:较高的处理速度、强大的通讯性能和优越的CPU资源裕量。
S7-400 PLC采用模块化无风扇的设计,可靠耐用,同时可以选用多种级别(功能逐步升级)的CPU,并配有多种通用功能的模板,这使用户能根据需要组合成不同的系统。当控制系统规模扩大或升级时,只要适当地增加一些模板,便能使系统升级和充分满足需要。[1]
功能强大的PLC,适用于中高性能控制领域
解决方案满足复杂的任务要求
功能分级的CPU以及种类齐全的模板,总能为其自动化任务找到的解决方案
实现分布式系统和扩展通讯能力都很简便,组成系统灵活自如
用户友好性强,操作简单,免风扇设计
随着应用的扩大,系统扩展无任何问题
西门子SC62连接电缆
保养编辑通过视窗化的调试工具软件,可以便捷地设置驱动参数,并对驱动器的控制参数进行动态优化。另一个例子是坐标变换功能。固**停止可以用来卡紧工件或定义简单参考点。模拟量控制控制模拟信号输出;各种功能体现了西门子公司新的产品创新技术,例如5个数字驱动轴,其中任意4个都可以作为联动轴进行插补运算,另一个作为定位轴使用,同时,还提供一个相应的数字式主轴(模拟主轴即将推出)作为一个变型使用, 在带C 轴功能时,可以采用3个数字轴,一个数字主轴,一个数字主轴和一个数字定位轴的配置。新一代的西门子驱动技术平台SINAMICS S120伺服系统通过已经集成在元件级的DRIVE-CLiQ来对错误进行识别和诊断,从操作面板就可以进行操作,使用的标准闪存卡(CF)可以非常方便的备份全部调试数据文件和子程序,通过闪存卡(CF)可以对加工程序进行快速处理,通过连接端子使用两个电子手轮,216 个数字输入和144 个数字输出(0.25A),RCS802 - 远程诊断和远程控制(NC 和 PLC),RCS@Event(通过电子邮件进行远程诊断),USB口(即将推出)。
为了市场需要已开发了各种简易,经济的**小型微型PLC。多CPU并行工作和大容量存储器其使用32位微处理器现已有I/O点数达14336点的**大型PLC小配置的I/O点数为8~16点。功能强。小型PLC由整体结构向小型模块化结构发展,使配置更加灵活以适应单机及小型自动控制的需要,如三菱公司α系列PLC。
转换条件满足就实现阶段转移。如图2所示。又称状态转移图语言。它将一个完整的控制过程分为若干阶段逻辑图语言编程能表图语言功能表图语言(SFC语言)是一种较新的编程方法上一阶段动作结束。各阶段具有不同的动作。有数字电路基础的电气技术人员较容易掌握阶段间有一定的转换条件下一阶段动作开始。
西门子模块CPU412-3H主站处理器安装顺序
人机界面(HMI)产品基本常识 1. 人机界面产品的定义连接可编程序控制器(PLC)、变频器、直流调速器、仪表等工业控制设备,利用显示屏显示,通过输入单元(如触摸屏、键盘、鼠标等)写入工作参数或输入操作命令,实现人与机器信息交互的数字设备,由硬件和软件两部分组成。HMI为英文Human-Machine Interface的缩写。
西门子PS407电源模块10A说明书CPU222/224/224XP/226。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。产品类项目应基于人工智能技术算法拥有自决策与自学习能力,已具备一定使用规模具有可推广价值。而在低电压大电流输出的应用场合,整流损耗和线路传导损耗占有较大的比重,输出电压越低,输出电流越大,则整流损耗和线路传导损耗占模块开关电源总损耗的比重越大。实例英寸转换为厘米用电脑控制西门子S120变频器,为何没法启动起来?2.SIMATICS7-300PLCS7-300是模块化小型PLC系统,能满足中等性能要求的应用。电机相数不同,其步距角也不同,一般二相电机的步距角为0.9°/1.8°、三相的为0.75°/1.5°、五相的为0.36°/0.72°。命令数据切换;SIMATICS7-1200小型可编程控制器充分满足于中小型自动化的系统需求。功能块包含在STEP7V5.3的标准库中。现在日本步进电动机年产量(含国外资公司)近2亿台,德国也是上步进电动机生产大国。解决方式如下:实例EM253实现典型的运动控制和带入了一个网络经济、数字化生存的。1.1.2S7-200系列PLC的I/O接线Ex(i)模块是按照[EExib]IIC测试的。(3)增加了客户和供货方的联系。西门子尽可能利用标准化组件,并以工业特定解决方案提供补充,以满足各行各业客户的特定需求。13.先出(FIFO)经实践使用后又有所改进,即引入频率补偿,能速度控制的误差;
西门子PS407电源模块10A说明书
西门子PLC-USS协议和变频器之间的通讯1、需要控制系统在设计时采用很多硬件,价格昂贵2、现场的布线多容易引起躁声和干扰
3、PLC 和变频器之间传输的信息受硬件的限制,交换的信息量很少。4、在变频器的启停控制中由于继电器接触器等硬件的动作时间有延时,影响控制精度。5、通常变频器的故障状态由一个接点输出,PLC能得到变频器的故障状态,但不能准确的判断当故障发生时,变频器是何种故障。
西门子PS407电源模块10A说明书SinamicsS210驱动器侧重于高动态的电机轴控制。西门子PLC编辑以太讯发展趋势之四,向五相和三相电动机方向发展。内存方面,CPU314从96KB扩展到128KB,CPU315-2DP从128KB扩展到256KB,CPU315F-2DP从192KB扩展到384KB。输入/断开的时间要大于PLC扫描时间;在STEP7的硬件组态窗口的PROFIBUSDP目录中选择相应IM153模块,可以看出该模块支持“moduleexchangeinopration”(热插拔);①PLC的每一个安装位置的地址可以任意定义,I/O点数量无规定,但同-PLC中不可以重复。X1,XA1,Y,Z,W1,WA1,S轴的驱动优化;
西门子PS407电源模块10A说明书
USS通讯协议介绍. USS通讯协议的功能,所有的西门子变频器都带有一个RS485通讯口,PLC作为主站,多允许31个变频器作为通讯连路中的从站,根据各变频器的地址或者采用广播方式,可以访问需要通讯的变频器,只有主站才能发出通讯请求报文,报文中的地址字符要传输数据的从站,从站只有在接到主站的请求报文后才可以向从站发送数据,从站之间不能直接进行数据交换。在使用USS协议之前,需要先安装西门子的指令库。USS协议指令在STEP7—MICRO/WIN32指令树的库文件夹中,STEP7—MICRO/WIN32指令库提供14个子程序、3个中断程序和8条指令来支持USS协议。调用一条指令时,将会自动地增加一个或几个子程序。

通过插槽数量和连接数量进行限制CP,点对点参见S7-400H高可用性自动化系统操作手册。通过插槽数量和连接数量进行限制PROFIBUS和EthernetCP14;其中大10CP,作为DP主站插槽所需插槽2时间时钟硬件时钟(实时时钟)是可缓冲和同步是分辨率1ms每日偏差(缓存),大值1.7s;断开电源每日偏差(不缓存),大值8.6s;接通电源运行时间计数器数量8数字/数字条0至7值域0至32767小时间隔尺寸1小时剩余是时间同步提供支持是在MPI上,主站是在MPI上,从站是在DP上,主站是在DP上,从站是在AS中,主站是在AS中,从站是通过以下方式同步系统中的时间差MPI,大值200ms数字输出集成通道(DO)0接口并行接口数量020mA接口数量(TTY)0RS232接口数量0RS422接口数量0其他接口数量01.接口接口类型集成物理组成RS485/PROFIBUS+MPI电位隔离是接口处的电源供应(15至30VDC),大值150mA连接源数量MPI:16,DP:16功能性MPI是DP主站是DP从站否MPI连接数量16传输速率,大值12Mbit/s服务PG/OP通讯是路由是**数据通讯否S7基础通讯否S7通讯是DP主站连接数量,大值16传输速率,大值12Mbit/sDP从站数量,大值32服务PG/OP通讯是路由是**数据通讯否S7基础通讯否S7通讯是等距离支持否SYNC/FREEZE否激活/禁用DP从站否直接数据交换(横向连接)否地址范围输入端,大值2kbyte输出端,大值2kbyte每个DP从站的有效数据每个DP从站的有效数据,大值244byte输入端,大值244byte输出端,大值244byte插槽数,大值244每个插槽,大值128byteDP从站连接数量没有作为DP从站的CPU组态3.接口接口类型插入式同步模块(LWL)插拔式接口模块同步模块IF9606ES7960-1AA04-0xA04.接口接口类型插入式同步模块(LWL)插拔式接口模块同步模块IF9606ES7960-1AA04-0xA0等时模式节拍同步运行(应用程序至端口同步)否等距离否通讯功能PG/OP通讯是无消息处理的可连接OP数量15有消息处理的可连接OP数量8**数据通讯提供支持否S7基础通讯提供支持否S7通讯提供支持是作为服务器是作为客户端是每个任务的有效数据,大值64kbyte每个任务的有效数据(一致性),大值462byte;1个变量S5兼容通讯提供支持是;(大关于10CP和FCAG_SEND和FCAG_RECV)每个任务的有效数据,大值8kbyte每个任务的有效数据(一致性),大值240byte每个CPU同时完成的AG-SEND/AG-RECV任务数量,大值24/24标准通讯(FMS)提供支持是;通过CP和可装载FB连接数量全部16可应用于PG通讯为PG通讯预留1可调整用于PG通讯,大值0可用于OP通讯为OP通讯预留1可调整用于OP通讯,大值0可应用于S7基本通讯为S7Basis通讯预留0可调整用于S7基本通讯,大值0可应用于S7通讯预留用于S7通讯0可调整的S7通讯,大值0可用于路由预留用于路由0可调整路由,大值0S7消息功能消息功能的可注册站点数量,大值8与符号相关的消息否与组件相关的消息是同时间活动的报警S组件,大值100报警8组件是报警8和S7通讯组件的实例数量,大值600预设,大值300传导技术消息是可同时注册的档案

电源接线PLC供电电源为50Hz、220V±10%的交流电。FX系列可编程控制器有直流24V输出接线端。该接线端可为输入传感(如光电开关或接近开关)提供直流24V电源。如果电源发生故障,中断时间少于10ms,PLC工作不受影响。若电源中断**过10ms或电源下降**过允许值,则PLC停止工作,所有的输出点均同时断开。当电源恢复时,若RUN输入接通,则操作自动进行。对于电源线来的干扰,PLC本身具有足够的能力。如果电源干扰特别严重,可以安装一个变比为1:1的隔离变压器,以减少设备与地之间的干扰。
3.接地良好的接地是保证PLC可*工作的重要条件,可以避免偶然发生的电压冲击危害。接地线与机器的接地端相接,基本单元接地。如果要用扩展单元,其接地点应与基本单元的接地点接在一起。为了抑制加在电源及输入端、输出端的干扰,应给可编程控制器接上地线,接地点应与动力设备(如电机)的接地点分开。若达不到这种要求,也必须做到与其他设备公共接地,禁止与其他设备串联接地。接地点应尽可能*近PLC
4.直流24V接线端使用无源触点的输入器件时,PLC内部24V电源通过输入器件向输入端提供每点7mA的电流。PLC上的24V接线端子,还可以向外部传感器(如接近开关或光电开关)提供电流。24V端子作传感器电源时,COM端子是直流24V地端。如果采用扩展船员,则应将基本单元和扩展单元的24V端连接起来。另外,任何外部电源不能接到这个端子。如果发生过载现象,电压将自动跌落,该点输入对可编程控制器不起作用。
每种型号的PLC的输入点数量是有规定的。对每一个尚未使用的输入点,它不耗电,因此在这种情况下,24V电源端子向外供电流的能力可以增加。FX系列PLC的空位端子,在任何情况下都不能使用。
5.输入接线PLC一般接受行程开关、限位开关等输入的开关量信号。输入接线端子是PLC与外部传感器负载转换信号的端口。输入接线,一般指外部传感器与输入端口的接线。输入器件可以是任何无源的触点或集电极开路的NPN管。输入器件接通时,输入端接通,输入线路闭合,同时输入指示的发光二极管亮。输入端的一次电路与二次电路之间,采用光电耦合隔离。二次电路带RC滤波器,以防止由于输入触点抖动或从输入线路串入的电噪声引起PLC误动作。若在输入触点电路串联二极管,在串联二极管上的电压应小于4V。若使用带发光二极管的舌簧开关,串联二极管的数目不能**过两只。另外,输入接线还应特别注意以下几点:
(1)输入接线一般不要**过30m。但如果环境干扰较小,电压降不大时,输入接线可适当长些。
(2)输入、输出线不能用同一根电缆,输入、输出线要分开。
(3)可编程控制器所能接受的脉冲信号的宽度,应大于扫描周期的时间。
6.输出接线
(1)可编程控制器有继电器输出、晶闸管输出、晶体管输出3种形式。
(2)输出端接线分为立输出和公共输出。当PLC的输出继电器或晶闸管动作时,同一号码的两个输出端接通。在不同组中,可采用不同类型和电压等级的输出电压。但在同一组中的输出只能用同一类型、同一电压等级的电源。
(3)由于PLC的输出元件被封装在印制电路板上,并且连接至端子板,若将连接输出元件的负载短路,将烧毁印制电路板,因此,应用熔丝保护输出元件。
(4)采用继电器输出时,承受的电感性负载大小影响到继电器的工作寿命,因此继电器工作寿命要求长。
(5)PLC的输出负载可能产生噪声干扰,因此要采取措施加以控制。此外,对于能使用户造成伤害的危险负载,除了在控制程序中加以考虑之外,还应设计外部紧急停车电路,使得可编程控制器发生故障时,能将引起伤害的负载电源切断。交流输出线和直流输出线不要用同一本电缆,输出线应尽量远离高压线和动力线,避免并行。

每个控制器两个同步 模块 ,用于通过光缆连接两个设备。 每个控制器 1 个 CPU 412-3H、1 个 CPU 414-4H 或 1 个 CPU 417-4H。 控制器中具有 S7-400 I/O 模块 。 UR1/UR2/ER1/ER2 扩展单元和/或带有I/O 模块 的 ET 200M 分布式 I/O 设备。 重要的功能始终采用冗余型设计。 I/O可以组态为常规可用性型和switched型。 常规可用I/O(单边组态) 在单边组态中,I/O 模块 为单通道设计,仅能由两个控制器中的一个来寻址。单边I/O 模块 可以插接 一个控制器和/或 扩展单元/分布式I/O设备 . 在I/O寻址设备工作正常的情况下,从单边读入的信息始终可以被两个控制器使用。在出现故障的情况下,受到影响的控制器的I/O 模块 将会停止工作。 单边组态用于: 不需要很高可用性的工厂部分。 连接基于用户程序的冗余 I/O。此时,系统必须具有一种对称设计。 增加可用性(倒换型配置) 在switched组态中,I/O 模块 为单通道设计,但是其寻址工作是由两个控制器通过冗余PROFIBUS DP完成。Switched I/O 模块 仅能插接 一个ET 200M分布式I/O设备 . 至控制器的连接通过PROFIBUS DP实现。此时,switched ET 200M连接至两个子单元上。 I/O 的冗余性 3.1版以及更高版本的操作系统均支持冗余I/O。 冗余 I/O 模块 以冗余方式成对配置。使用冗余I/O可以实现可用性的大化,因为这种工作模式能够容忍一个CPU、PROFIBUS或者信号 模块 出现故障。 配置选项 可进行下列配置: 针对单侧 DP 从站采用冗余 I/O 针对切换式 DP 从站采用冗余 I/O 适宜的 I/O 模块 彼此冗余的 模块 的类型必须相同,且采用相同的设计(例如,均为集中式或者均为分布式)。插槽不强制规定。不过,出于可用性原因,建议在不同的站中使用。关于可以使用哪些 模块 ,请咨询用户支持部门或者参考相关手册。 FM 和 CP 的冗余 这两种不同的组态都可以以冗余方式使用功能 模块 (FM)和通信处理机(CP): 切换冗余设计: 功能 模块 (FM)/通信处理机(CP)可以成双地连接至单个ET 200M或者一个switched ET 200M。 双通道冗余设计: 功能 模块 (FM)/通信处理机(CP)可以插接两个子单元或者子单元所连接的扩展单元(参见单边组态)
此时可以不同方式取得 模块 的冗余性: 由用户编程: 在功能 模块 和SIMATIC通信处理机上,总体上说,用户可以对其冗余功能进行编程。识别出主动 模块 ,当检测到可能出现故障时启动切换操作。所需要的程序与用于配有冗余FM/CP的单个CPU的程序相一致: 由操作系统直接支持。 对于SIMATIC NET-CP 443-1,冗余由操作系统直接支持。详细信息,参见下面的“通信”。 S7-400 F/FH 故障安全型 S7-400 F/FH自动化系统可以根据需求进行不同的组态: S7-400 F的单通道单侧I/O 工厂需要使用故障安全型控制器。*容错。需要下列部件: 1 CPU 414-4H/417-4H,含 F-Runtime 许可证。 1 PROFIBUS DP 连接线。 ET 200M,配有IM 153-2。 故障安全信号 模块 ,非冗余型。 在发生故障的情况下,I/O不可用。故障安全信号 模块 为被动型。 单通道switched I/O,用于 S7-400 FH 工厂需要使用故障安全型控制器。对于 CPU 需要容错
需要下列部件: 2 CPU 414-4H/417-4H,含 F-Runtime 许可证。 2 根 PROFIBUS DP 连接线。 1 个 ET 200M ,带 2 个 IM 153-2 (冗余)。 故障安全信号 模块 ,非冗余型。 在CPU、IM 153-2或者PROFIBUS DP连接线出现故障的情况下,控制器仍然保持可用状态。在故障安全信号 模块 或者ET 200M出现故障的情况下,I/O不再可以使用。故障安全信号 模块 为被动型。 冗余switched I/O,用于 S7-400 FH 工厂需要使用故障安全型控制器。在CPU侧和I/O侧,必须实现容错功能。需要下列部件: 2 CPU 414-4H/417-4H,含 F-Runtime 许可证。 2 根 PROFIBUS DP 连接线。 2 个 ET 200M ,带 2 个 IM 153-2 (冗余)。 故障安全信号 模块 ,冗余型。 CPU、IM 153-2或者PROFIBUS DP连接线、故障安全信号 模块 或者ET 200M出现故障的情况下,控制器仍然保持可用状态
PLC中工程量转换的基本方法
1、基本概念
我们生活在一个物质的世界中。世间所有的物质都包含了化学和物理特性,我们是通过对物质的表观性质来了解和表述物质的自有特性和运动特性。这些表观性质就是我们常说的质量、温度、速度、压力、电压、电流等用数学语言表述的物理量,在自控领域称为工程量。这种表述的优点是直观、容易理解。在电动传感技术出现之前,传统的检测仪器可以直接显示被测量的物理量,其中也包括机械式的电动仪表。
2、标准信号
在电动传感器时代,控制成为可能,这就需要检测信号的远距离传送。但是纷繁复杂的物理量信号直接传送会大大降低仪表的适用性。而且大多传感器属于弱信号型,远距离传送很容易出现衰减、干扰的问题。因此才出现了二次变送器和标准的电传送信号。二次变送器的作用就是将传感器的信号放大成为符合工业传输标准的电信号,如0-5V、0-10V或4-20mA(其中用得多的是4-20mA)。而变送器通过对放大器电路的零点迁移以及增益调整,可以将标准信号准确的对应于物理量的被检测范围,如0-100℃或-10-100℃等等。这是用硬件电路对物理量进行数学变换。控制室的仪表将这些电信号驱动机械式的电压表、电流表就能显示被测的物理量。对于不同的量程范围,只要更换指针后面的刻度盘就可以了。更换刻度盘不会影响仪表的根本性质,这就给仪表的标准化、通用性和规模化生产带来的无可的好处。
3、数字化仪表
到了数字化时代,指针式显示表变成了更直观、更的数字显示方式。在数字化仪表中,这种显示方式实际上是用纯数学的方式对标准信号进行逆变换,成为大家习惯的物理量表达方式。这种变换就是依靠软件做数算。这些运算可能是线性方程,也可能是非线性方程,现在的电脑对这些运算是易如反掌。
4、信号变换中的数学问题
信号的变换需要经过以下过程:物理量-传感器信号-标准电信号-A/D转换-数值显示。
声明:为简单起见,我们在此讨论的是线性的信号变换。同时略过传感器的信号变换过程。
假定物理量为A,范围即为A0-Am,实时物理量为X;标准电信号是B0-Bm,实时电信号为Y;A/D转换数值为C0-Cm,实时数值为Z。
ASCII 输出数字格式
正值写入输出缓冲区时不带符号。
负值写入输出缓冲区时带前导负号 (-)。
小数点左侧的前导零会被隐藏,但与小数点相邻的数字除外。
输出字符串中的值为右对齐。
实数:小数点右侧的值被舍入为小数点右侧的位数。
实数:输出字符串的大小必须比小数点右侧的位数多至少三个字节
输出字符串的长度始终为 8 个字符。输出缓冲区中小数点右侧的位数由 nnn 字段分配。nnn 字段的有效范围是 0 到 5。如果分配 0 位数到小数点右侧,则转换后的值无小数点。
对于 nnn 大于 5 的值,输出为 8 个 ASCII 空格字符组成的字符串。c 位使用逗号
(c=1) 还是小数点 (c=0) 作为整数部分与小数部分之间的分隔符。格式的有效 4 位必
须是零。
下图还给出了值的示例,其格式为:使用小数点 (c = 0),小数点右侧有三位数 (nnn =
011)。OUT 处的值为下一字节地址中存储的字符串的长度。
输出字符串的长度始终为 12 个字符。输出缓冲区中小数点右侧的位数由 nnn 字段。
nnn 字段的有效范围是 0 到 5。如果分配 0 位数到小数点右侧,则该值不显示小数点。对
于 nnn 大于 5 的值,输出为 12 个 ASCII 空格字符组成的字符串。c 位使用逗号
(c=1) 还是小数点 (c=0) 作为整数与小数部分之间的分隔符。格式的高 4 位必须是零。
下图还给出了一个值的示例,其格式为:使用小数点 (c = 0),小数点右侧有四位数 (nnn
= 100)。OUT 处的值为下一字节地址中存储的字符串的长度。
CPU 使用的实数格式多支持 7 位有效数字。尝试显示 7 位以上有效数字会产生舍入错
误。
输出字符串的长度由 ssss 字段。0、1 或 2 个字节大小无效。输出缓冲区中小数点右
侧的位数由 nnn 字段分配。nnn 字段的有效范围是 0 到 5。如果分配 0 位数到小数点右
侧,则该值不显示小数点。如果 nnn 大于 5,或者因分配的输出字符串长度太小而无法存
储转换的值,则会用 ASCII 空格字符填充输出字符串。c 位使用逗号 (c=1) 还是小数
点 (c=0) 作为整数与小数部分之间的分隔符。
下图还给出了一个值的示例,其格式为:小数点 (c = 0),小数点右侧有一位数 (nnn =
001),输出字符串的长度为 6 个字符 (ssss = 0110)。OUT 处的值为下一字节地址中存储
的字符串的长度。
http://zhangqueena.b2b168.com