6
参数设置
变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。
西门子变频器
控制方式:即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。
低运行频率:即电机运行的小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会,也会导致电缆发热。
运行频率:一般的变频器大频率到60Hz,有的甚至到400 Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的**额定转速运行,电机的转子是否能承受这样的离心力。
载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。
电机参数:变频器在参数中设定电机的功率、电流、电压、转速、大频率,这些参数可以从电机铭牌中直接得到。
跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。
控制参数
变频器日常使用中出现的一些问题,很多情况下都是因为变频器参数设置不当引起的。西门子变频器可设置的参数有几千个,只有系统地、合适地、准确地设置参数才能充分利用变频器性能。[1]
变频器控制方式的选择由负荷的力矩特性所决定,电动机的机械负载转矩特性根据下列关系式决定:
p= t n/ 9550
式中:p——电动机功率(kw)
t——转矩(n. m)
n——转速(r/ min)
转矩t与转速n的关系根据负载种类大体可分为3种[2]。
(1)即使速度变化转矩也不大变化的恒转矩负载,此类负载如传送带、起重机、挤压机、压缩机等。
(2)随着转速的降低,转矩按转速的平方减小的负载。此类负载如风机、各种液体泵等。
(3)转速越高,转矩越小的恒功率负载。此类负载如轧机、机床主轴、卷取机等。
变频器提供的控制方式有v/f控制、矢量控制、力矩控制。v/f控制中有线性v/f控制、抛物线特性v/f控制。将变频器参数p1300设为0,变频器工作于线性
v/f控制方式,将使调速时的磁通与励磁电流基本不变。适用于工作转速不在低频段的一般恒转矩调速对象。
将p1300设为2,变频器工作于抛物线特性v/f控制方式,这种方式适用于风机、水泵类负载。这类负载的轴功率n近似地与转速n的3次方成正比。其转矩m近似地与转速n的平方成正比。对于这种负载,如果变频器的v/f特性是线性关系,则低速时电机的许用转矩远大于负载转矩,从而造成功率因数和效率的严重下降。为了适应这种负载的需要,使电压随着输出频率的减小以平方关系减小,从而减小电机的磁通和励磁电流,使功率因数保持在适当的范围内。
可以进一步通过设置参数使v/f控制曲线适合负载特性。将p1312在0至250之间设置合适的值,具有起动提升功能。将低频时的输出电压相对于线性的v/f曲线作适当的提高以补偿在低频时定子电阻引起的压降导致电机转矩减小的问题。适用于大起动转矩的调速对象。
变频器v/f控制方式驱动电机时,在某些频率段,电机的电流、转速会发生振荡,严重时系统无法运行,甚至在加速过程中出现过电流保护,使得电机不能正常启动,在电机轻载或转矩惯量较小时更为严重。可以根据系统出现振荡的频率点,在v/f曲线上设置跳转点及跳转频带宽度,当电机加速时可以自动跳过这些频率段,保证系统能够正常运行。从p1091至p1094可以设定4个不同的跳转点,设置p1101确定跳转频带宽度。
有些负载在特定的频率下需要电机提供特定的转矩,用可编程的v/f控制对应设置变频器参数即可得到所需控制曲线。
MB_REDSV块是SIMATIC Modbus/TCP Red的一个组件。这使得SIMATIC CPU与支持Modbus/TCP的第三方设备之间的通信成为可能。Modbus/TCP通信通过默认的服务器502端口实现。过去,S7-400H站中发布使用的CP时只允许通过502端口使用一个连接。
下表中列出的S7-400 CP已发布与S7-400H站中使用,且支持多个TCP连接。因此它们允许在本地端口502上使用多个连接。
CP 订货号 固件版本
CP443-1 6GK7443-1EX30-0XE0 V3.0 及更高版本(非3.2.9)
CP443-1 Advanced 6GK7443-1GX30-0XE0 V3.0 及更高版本(非3.2.9)
如果要建立双边冗余,并使S7-400 H站作为Modbus服务器,Modbus客户端可以建立2个连接到CP0的502端口和2个连接到CP1的502端口。
多路端口502的功能
在NetPro中为502端口建立一个被动连接,CP卡的固件依次处理到来的TCP消息。从S7用户程序的角度来看,一个多路复用的连接表现为一个单个连接。 在NetPro中显示和在诊断中是累积的。也就是说当建立了至少一个连接时,状态显示为 "连接建立",但无法查看有多少个Modbus客户端连接到502端口上。
配置
如果在双边冗余的情况下,S7-400H站被配置为Modbus服务器,并使用多路端口502,则必须采用被动连接设置为CP0和CP1在502端口的创建一个未的连接。在MB_REDSV功能块的 id_0_a 和 id_1_a输入端对应NetPro的连接IDAOP(AAOP)语言包丢失
如果AOP面板显示“No Language load”,AAOP显示“没有语言包”,表示AOP(AAOP)操作面板的全部语言包丢失了。
处理办法:
维修,丢失语言包的AOP(AAOP)将无法使用,只有通过才能解决该问题。
可能原因:
AOP(AAOP)面板电池没有点了,语言包数据依靠电池保存;
所有的系统语言被。AOP(AAOP)允许用户将不使用的系统语言,如果所有语言被将显示“没有语言包”提示
串级调速。串级调速必须采用绕线式异步电动机,将转子绕组的一部分能量通过整流、逆变再送回到电网,这样相当于调节了转子的内阻,从而改变了电动机的滑差;由于转子的电压和电网的电压一般不相等,所以向电网逆变需要一台变压器,为了节省这台变压器,现在国内市场应用中普遍采用内馈电机的形式,即在定子上再做一个三相的绕组,接受转子的反馈能量,绕组也参与做功,这样主绕组从电网吸收的能量就会减少,达到调速节能的目的
高低方式。由于当时高压变频技术没有解决,就采用一台变压器,先把电网电压降低,然后采用一台低压的变频器实现变频;对于电机,则有两种办法,一种办法是采用低压电机;另一种办法,则是继续采用原来的高压电机,需要在变频器和电机之间增加一台升压变压器。上述三种方式,发展到目前都是比较成熟的技术。液力耦合器和串级调速的调速精度都比较差,调速范围较小,维护工作量大,液力耦合器的效率相比变频调速还有一定的差距,所以这两项技术竞争力已经不强了。至于高低方式,能够达到比较好的调**果,但是相比真正的高压变频器,还有如下缺点:效率低,谐波大,对电机的要求比较严格,功率较大时(500KW以上),可靠性较低。高低方式的主要优势在于成本较低
西门子MM440变频器
在变频器领域,也存在着一些难以控制的东西。直到西门子功能强大的变频器问世之后,情况才有了改观。MICROMASTER 440 是针对与通常相比需要更加广泛的功能和更高动态响应的应用而设计的。这些矢量控制系统可确保*的高驱动性能,即使发生突然负载变化时也是如此。由于具有快速响应输入和定位减速斜坡,因此,甚至在不使用编码器的情况下也可以移动至目标位置。该变频器带有一个集成制动斩波器,即使在制动和短减速斜坡期间,也能以**的精度工作。所有这些均可在 0.12 kW (0.16 HP) 直至 250 kW (350 HP) 的功率范围内实现
变频器v/f控制方式驱动电机时,在某些频率段,电机的电流、转速会发生振荡,严重时系统无法运行,甚至在加速过程中出现过电流保护,使得电机不能正常启动,在电机轻载或转矩惯量较小时更为严重。可以根据系统出现振荡的频率点,在v/f曲线上设置跳转点及跳转频带宽度,当电机加速时可以自动跳过这些频率段,保证系统能够正常运行。从p1091至p1094可以设定4个不同的跳转点,设置p1101确定跳转频带宽度。
有些负载在特定的频率下需要电机提供特定的转矩,用可编程的v/f控制对应设置变频器参数即可得到所需控制曲线。设置p1320、p1322、p1324确定可编程的v/f特性频率座标,对应的p1321、p1323、p1325为可编程的v/f 特性电压座标。
参数p1300设置为20,变频器工作于矢量控制。这种控制相对完善,调速范围宽,低速范围起动力矩高,精度高达0.01%,响应很快,高精度调速都采用svpwm矢量控制方式。
西门子430变频器出现A0501是什么意思,怎么解决?
解决办法:1检查电动机功率是不是和变频器*及变频器设定P0307 p0206是不是和电动机*。2检查电缆及电动机是不是有接地故障或者电动机是不是有存在匝间短路故障。3电动机是不是有过热或过载**额定电流现象。4如果确定以上都没有问题,可以适当加速时间。 电动机的功率与变频器的功率不匹配 2 电动机的连接导线太长 3 接地故障 故障应采取的措施: 1 电动机的功率(P0307)必须与变频器功率(P0206)相对应 2 电缆长度不得**过允许值 3 输入变频器的电机参数必须与实际使用的电动机* 4 定子电阻值(P0305)必须正确无误 5 电动机的冷却风道是否堵塞 电动机是否过载 (斜坡上升时间,“”的数值)
现场模拟量信号经A/D转换后变成离散的数字信号,然后将形成的数据按时间序列存入PLC内存。再利用数字滤波程序对其进行处理,滤去噪声部分获得单纯信号, 可对输入信号用m次采样值的平均值来代替当前值,但井不是通常的每采样。次求一次平均值,而是每采样一次就与近的m-l次历史采样值相加,此方法反应速度快,具有很好的实时性,输入信号经过处理后用干信号显示或回路调节,有效地抑制了噪声干扰。
高**的通讯能力和强大的集成接口使SIMATIC S7-400成为适合诸如对整个系统进行协调的较大任务过程控制器的理想选择。CPU的分级使得性能的可扩展成为可能。
同时,对外设I/ O能力的扩展几乎是无限的。而且,程序控制器信号模块可以在系统运行中(热插拔)进行插入和操作,很容易进行系统扩展或模块更换
模拟量扩展模块22单击“编译”按钮或选择菜单命令“PLC”→“编译”(Compile),编译当前被的窗口中的程序块或数据块
否则可能使PLC接收到错误的信号
1、在未知该西门子PLC解密状态的情况下,需要先确定该PLC加密等级,这里需要用到一款软件“STEP7-MicroWIN”,用这款PLC编程软件读取PLC确定该PLC加密等级和通讯波动率、PLC地址
工作数据是PLC运行过程中经常变化、经常存取的一些数据多数是设计前先选择与自己工艺要求相近的程序,把这些程序看成是自己的“试验程序”
TCP/IP传输协议:
通过TCP连接的配置实现站间(包括第三方的站)的数据交换
因为在程序设计过程中,难免会有疏漏的地方
可以试一下卸载SQLserver2005其他版本的软件,再安装试试
自COMLink上的USS通信;3.P2009:决定是否对COMLink上的USS通信设定值规格化,即设定值将是运转频率的百分比形式,还是频率值。为0,不规格化USS通信设定值,即设定为MM440中的频率设定范围的百分比形式;为1,对USS通信设定值进行规格化,即设定值为的频率数值;4.P2010:设置COMLink上的USS通信速率。根据S7-1200通信口的限制,支持的通信波特率
仍显示“E”报警。拆下CUVC板检查发现CBT通讯板上贴片电阻烧坏。更换新CBT通讯板后,变频器启动工作正常。(4)故障现象:操作控制面板PMU板液晶显示屏显示“E”报警检查处理(参见图1、图2、图4):检查底板电源块N2(L4974A)*1脚的开机电压为11.32V,正常值为26.7V;*20脚输出电压为0.117V,正常值为15.31V;基准电压块N3(MC340)*1脚电压为0.315V,正常值为2.1V
故障报警历史记录
当MM4系列变频器发生报警或者故障时,变频器自动记录报警代码和故障代码,可供用户查询。当用户排除了故障源、报警源后,如果用户需要清除之前的记录,可以进行报警故障记录清除。
如何查询故障历史记录?
MM420/430/440多可以记录8个故障记录,参数r0947的下标in000和in001记录着当前发生的故障代码,in002至in007记录着曾经发生的故障代码,其中in002和in003记录着距当前时刻近发生的故障代码,in004和ni005次之,in006和in007记录着距当前时刻远发生的故障代码。
例如:r0947.in002=3,表示曾经发生过F0003故障。
如何查询报警历史记录?
MM420/430/440多可以记录4个报警记录,参数r2110的下标in000和in001记录着当前发生的报警代码,in002至in003记录着曾经发生的报警代码。
例如:r2110.in002=501,表示曾经发生过A0501报警。
故障报警记录如何清除?
P0952记录着故障总数,当P0952 设置为0时,清除所有故障的历史记录。
P2111记录着报警总数,当P2111 设置为0时,清除所有报警的历史记录
如何进行故障确认
方法1:为变频器断电重新上电;
方法2:使用操作面板的Fn键确认故障,当变频器出现故障后按操作面板Fn键确认当前故障;
方法3:使用数字量输入信号确认故障,将数字量输入功能设置为故障确认,当变频器出现故障后该数字量输入的上升沿确认当前故障。例如,使用数字量输入3(DIN3,7号端子)作为故障确认,设置P0703=9,出现故障后将7号端子闭合确认当前故障;
西门子变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。
2、为什么西门子变频器的电压与电流成比例的改变?
异步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁 电机。因此,频率与电压要成比例地改变,即改变频率的同时控制西门子变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于 风机、泵类节能型西门子变频器。
3、西门子变频器制动的有关问题
制动的概念:指电能从电机侧流到西门子变频器侧(或供电电源侧),这时电机的转速**同步转速,负载的能量分为动能和势能. 动能(由速度和重量确定其大小)随着物体的运动而累积。当动能减为零时,该事物就处在停止状态。机械抱闸装置的方法是用制动装置把物体动能转换为摩擦和能消耗掉。对于西门子变频器,如果输出频率降低,电机转速将跟随频率同样降低。这时会产生制动过程. 由制动产生的功率将返回到西门子变频器侧。这些功率可以用电阻发热消耗。在用于提升类负载,在下降时, 能量(势能)也要返回到西门子变频器(或电源)侧,进行制动.这种操作方法被称作“再生制动”,而该方法可应用于西门子变频器制动。在减速期间,产生的功率如果不通过热消耗的方法消耗掉,而是把能量返回送到西门子变频器电源侧的方法叫做“功率返回再生方法”。在实际中,这种应用需要“能量回馈单元”选件。
4、采用西门子变频器运转时,电机的起动电流、起动转矩怎样?
采用西门子变频器运转,随着电机的加速相应提高频率和电压,起动电流被限制在150%额定电流以下(根据机种不同,为125%~200%)。用工频电源直接起动 时,起动电流为6~7倍,因此,将产生机械电气上的冲击。采用西门子变频器传动可以平滑地起动(起动时间变长)。起动电流为额定电流的1.2~1.5倍,起动转 矩为70%~120%额定转矩;对于带有转矩自动增强功能的西门子变频器,起动转矩为以上,可以带全负载起动。
5、装设西门子变频器时安装方向是否有限制。
西门子变频器内部和背面的结构考虑了冷却效果的,上下的关系对通风也是重要的,因此,对于单元型在盘内、挂在墙上的都取纵向位,尽可能垂直安装。
6、不采用软起动,将电机直接投入到某固定频率的西门子变频器时是否可以?
在很低的频率下是可以的,但如果给定频率高则同工频电源直接起动的条件相近。将流过大的起动电流(6~7倍额定电流),由于西门子变频器切断过电流,电机不能起动。
7、西门子变频器可以传动齿轮电机吗?
根据减速机的结构和润滑方式不同,需要注意若干问题。在齿轮的结构上通常可考虑70~80Hz为大限,采用油润滑时,在低速下连续运转关系到齿轮的损坏等
打开编程软件,进行硬件配置,并将I/O地址写在符号表中虽然不同PLC使用的编程软件不同,但编程步骤大致一样。步就是进行硬件组态,根据实际PLC的类型建立硬件配置及相应的通讯配置。硬件组态完成后,将之前在纸上记录下来的I/O地址写在软件的符号表中。不同软件对于符号表的定义可能不同,但一般都有该功能,保证符号表填写的准确性是至关重要的。在编写符号表时,不仅要把设备输入输出的地址写正确,好再给每个地址命名并添加注释,这对后面的编程会非常方便。不需要在编程时每次都查询地址,只要填写命名好的名称即可。
无组态连接通讯方式:它适用于S7-200/300/400之间通讯,却不能与全局数据包通讯混淆使用。其为双向通讯方式时,要求通讯双方都有调用通讯块,一个通讯块用于发送数据
硬件组成
在现有的S7-200PLC电气系统中,不需要增加任何资源。在外部计时条件满足的情况下,CPU开始计时,同时,计时数据通过PPI电缆传到人机界面显示。
软件设计
计时器。利用系统的寄存器标志位SM0.5作为计时脉冲,接通一次(或断开一次)为1秒,用计数器累计时间,满60向前进位。
时间累计。实时的小时计是**次的累计时间加本次的工作时间。H=h0+h1。
时间存储。用*存储的方式存储时间数据到EEPROM存储器。
存储周期。存储周期长,EEPR
OM存储器使用的时间长,但计时精度低;存储周期短,计时精度高,但EEPROM存储器使用的时间短。这是一个矛盾的统一,设计时要根据系统的实际情况确定合适的存储周期,一般设计为3-5分钟。进行一次*存储的操作,扫描时间会增加15-20ms。
小时计编辑功能。考虑到CPU有可能损坏的原因,更换CPU后小时计的数据会清零,所以,小时计要有编辑的功能才更完善,当更换CPU后,通过界面可以把以前的工作数据输入到系统并*存储,在这项操作时,为了使编辑的数据能够成功存储到*存储区,必须在数据编辑完后,让CPU再运行一个大于存储周期的时间。当然,为了使工作数据的严谨性,小时计的编辑一定要密码进入。
存储地址更换。为了小时计的实时性和准确性,存储周期不能设计得太长,一般设计为3-5分钟。EEPROM存储器操作的安全次数为10万次,那么一个EEPROM存储器安全计时时间为100000×3/60=5000小时,一般机器的工作寿命是大于这个时间。解决这个问题的办法是在计时次数**过100000次时,更换存储地址。为了存储地址更换的方便,小时计的寻址方式采用间接寻址。
存储次数存储。为了小时计存储地址更换的需要,存储次数也要与小时计一样进行*存储,并到100000次后更换地址。
地址更换的次数存储。为了小时计存储地址更换的需要,地址更换的次数也要与小时计一样进行*存储,由于次数不多,所以,不要更换地址
BOP如何查询故障时间?
参数P2114是变频器运行时间计数器,记录着变频器总的上电时间,当变频器断电时,运行时间计数器的数据被存储起来,在下次上电时,变频器接着对运行时间计数。
r2114 [0] 上电时间,秒,高位字
r2114 [1] 上电时间,秒,低位字
从r2114 中读出的数据如何计算系统上电时间,计算方法如下:
例如:
r2114[0]=234
r2114[1]=800
计算过程如下:
r2114[0] * 65536 + r2114[1] = 234 *65536 + 800 = 15336224秒
通过计算变频器当前上电时间共15336224秒约177天时间。
参数r0948 存储故障发生时的变频器上电时间,这一时间可以推算出故障大概是在什么时候出现的。
r0948[0]:新近的故障跳闸信号--,上电时间,秒,高位字
r0948[1]:新近的故障跳闸信号--,上电时间,秒,低位字
r0948[2]:未使用
r0948[3]:新近的故障跳闸信号-1 ,上电时间,秒,高位字
r0948[4]:新近的故障跳闸信号-1 ,上电时间,秒,低位字
r0948[5]:未使用
r0948[6]:新近的故障跳闸信号-2 ,上电时间,秒,高位字
r0948[7]:新近的故障跳闸信号-2 ,上电时间,秒,低位字
r0948[8]:未使用
r0948[9]:新近的故障跳闸信号-3 ,上电时间,秒,高位字
r0948[10] :新近的故障跳闸信号-3 ,上电时间,秒,低位字
r0948[11]:未使用
http://zhangqueena.b2b168.com
欢迎来到浔之漫智控技术(上海)有限公司网站, 具体地址是上海市松江区永丰街道上海市松江区广富林路4855弄52号3楼,联系人是聂航。
主要经营电气相关产品。
单位注册资金单位注册资金人民币 100 万元以下。
价格战,是很多行业都有过的恶性竞争,不少厂家为了在价格战役中获胜,不惜以牺牲产品质量为代价,而我们公司坚决杜绝价格战,坚持用优质的原材料及先进的技术确保产品质量,确保消费者的合法利益。