产品描述
6GK7342-5DA03-0XE0
AM3352是TI公司推出的一款ARM Cortex—A8内核的工业级处理器,主频高达1 GHz。AM3352处理器采用32位内部总线构架,内含具有单错检测(奇偶校验)的32/32 KB数据/指令一级高速缓存,具有错误纠正码(ECC)的256 KB二级高速缓存。
1 65910A3电源分配与上电时序
65910A3具有4路DC—DC转换器,其中2路高效DC—DC降压转换器为处理器提供电源,可通过德州仪器的class-3 SmartReflex接口对该2路DC—DC降压转换器进行动态电压调节,以便达到节省功耗的目的。另有一路DC—DC升压转换器,输出电压大可达5.25 V。
65910A3的VDD1与VDD2具有动态电压调节功能,与其他DC—DC和LDO都可通过I2C结构进行电压设置。设计时,将VDD1与VDD2分别接到AM3352的内核电源,即VCC1_CORE和VCC_MPU。当处理器的运行频率发生改变时,这两个内核电压可以自动调节大小以减小系统功耗。659 10A3的VCCIO输出电压与65910不同。前者输出电压为1.5 V,后者输出电压为1.8 V,因此利用65910A3的VCCIO的输出电压为DDR3内存和AM3352的内存总线接口供电。VDD3是升压DC—DC转换器,可为5 V电源设备供电。65910A3的LDO可为AM3352及其他外围电路供电
西门子PLC编程软件
西门子公司针对SIMATIC系列PLC提供了很多种的编程软件,主要有STEPMICRO/DOS和STEPMICRO/WIN;STEPmini;标准软件包STEP7
S7系列的PLC的编程语言非常丰富,有LAD、STL、SCL、GRAPH、HIGRAPH、CFC等。用户可以选择一种语言编程,如果需要,也可以混合使用几种语言编程。
2.程序结构
程序结构主要适用与S7-3000和S7-400,他有线性编程、分步式编程和结构化编程等3种编程方法。
FPI系列可编程控制器是日本松下电工公司的小型PLC产品。
FPI编程软件及指令系统
1.编程方式
NPST-GR提供了3种编程方式:梯形图方式;语句表方式和语句表达方式。
2.注释功能
NPST-GR可以为I/O继电器和输出点加入注释,使用户对继电器所对应的设备及继电器的用途一目了然。
3.程序检查
NPST-GR能查找程序中语法的错误和进行程序校验
4.监控
NPST-GR能监控用户编制的程序,并可以进行运行测试。用户可以检查继电器、寄存器和PLC工作状态,方便的进行调试与修改。
5.系统寄存器设置
NPST-GR可设置N0.0-N0.418系统寄存器的内容,根据屏幕的提示信息进行选择或输入,简单方便。
6.I/O和远程I/O地址分配
用NPST-GR可以为主机扩展板上每个槽分配I/O和远程I/O地址
7.数据管理
数据管理可以将程序或数据存盘,用于数据备份,或在传入PLC之前暂存数据
两者在编程的应用上还有就是西门子的是单母线,而日本松下的是双母线;
还有就是西门子和日本松下的输入和输出也不同的,日本松下的输入就只有X,输出就只有Y。
其实语言是相通的,就是方法不同,两个可以相互转换。
西门子S7-1200PLC的IEC格式的定时器属于功能块。在插入定时器指令时,要求创建一个16字节的IEC_Timer数据类型的DB结构(即背景数据块),来保存有关的数据。在功能块中,可以事先创建一个IEC_Timer数据类型的静态变量(多重背景),然后将它给定时器指令。
CPU没有给任何特定的定时器指令分配专门的资源。每个定时器使用DB结构和一个连续运行的内部CPU定时器(我的理解是一个硬件定时器)来执行定时。
在定时器指令的输入IN的上升沿启动定时器时,连续运行的内部CPU定时器的值将被复制到为该定时器指令分配的DB结构的元素START(起始值)中。
该起始值在定时器继续运行期间将保持不变,以后将在每次更新定时器时使用。以下条件时将会执行定时器更新:
1)执行定时器指令(TP、TON、TOF或TONR);
2)定时器结构的元素ELAPSED(经过的时间)或位输出Q作为其它指令的参数,该指令被执行。
更新定时器时,将从内部CPU定时器的当前值中减去上述起始值,得到经过的时间ELAPSED。再将ELAPSED与预设值PT进行比较,以确定定时器的位输出Q的状态。然后更新该定时器的DB结构的元素ELAPSED和Q。达到预设值PT后,定时器不会继续累加经过的时间ELAPSED。
STEP7Basic的V11版与V10.5版相比,增加了类似于S7-300/400的定时器线圈指令。
从上述的定时器内部的定时机制可知,在使用定时器时,其定时精度与CPU的扫描周期有很大的关系。在CPU两次更新定时器之间,定时器的输入、输出参数保持不变。
为了验证上述结论,在FB1中调用定时器指令TP,在OB1中用I0.1作为调用条件,调用FB1。用监视表格监视定时器的输出Q和经过的时间ET,用输入IN的上升沿启动定时器后,如果I0.1为0状态,没有调用FB1和执行定时器指令,定时器的输出Q和经过的时间ET保持不变。只有在调用FB1,执行定时器指令时,ET的值才会变化。
对于CPU31*C紧凑型CPU,由于CPU模块本身集成有I/O点,对于这些I/O点,同样需要设定其属性参数。
在硬件安装清单上,右键单击CPU模块集成I/O所在的行,并选中“对象属性(ObjectProperties...)”选项,可以打开集成I/O的参数设定页面。
通过设定页面不同的标签,可以打开不同的参数设定对象。
在基本参数(General)设定页面,可以在“简介(Short)”栏显示集成I/O的特征参数。在“地址(Address)”设定页面,可以显示与设定集成I/O的起始地址,地址也可以通过选定“系统选择(SVqtemqelection)”诜项,由PLC讲行白动分配
西门子S7-200的自由口通信需要通过编程设置串口的工作模式,安排发送和接受指令的触发顺序,还要设定接收的起始和结束条件。对于刚刚开始使用s7-200的电气工程师来说,的确有很多细微处易犯错误。一般碰到客户抱怨通信不上的问题,就要逐一帮客户确认编程配置是否正确。虽然麻烦,不过逐条查下去,总能查到错误所在并解决问题。但是有一次客户遇到的问题颇出人意料,还真耗费了一些时间。
客户反应在编写了自由口通信程序之后,PLC可以发送数据给通信伙伴,但是却收不到任何伙伴方发出的数据。能发送数据给对方,说明通信端口设置没有问题。较有可能是端口被其他通信指令占用导致无法进入接收状态。比如说用常开点调用XMT,或者没有对接收的故障状态进行判断并终止接收,从而导致后续的XMT和RCV都无法被正确执行。客户表示他的程序并不存在这种情况。但是为了测试问题所在,客户下载了一个仅包含条件触发RCV的程序下去,还是接收不到数据。监控程序RCV指令已被正常执行。
那么是不是接收的起始条件设置不当?客户使用的是起始字符,这并无不妥。并且改成空闲线检测之后,问题依然存在。难道是对方发送的信号有问题用串口调试软件来测试,是可以接收到的。眼见这几个常见错误都没能cover住这个问题,我只好从头一步步地跟客户确认。但是还是没能发现任何破绽。郁闷之下,只好让客户把程序发过来看看。
次检查程序的时候还真没注意到问题出在哪里。等到看出来了才觉得啼笑皆非:
不知道大家看出来没有?客户在设定完空闲线时间SMW90和消息定时器溢出值SMW92后,惯性地将接受地大字符数SMB94也写成了传送字SMW94。而西门子PLC的高低字节是逆序的,也就是说SMB94为高有效字节,SMB95为低有效字节。见手册中的如下说明:
随着自动化领域的不断发展变频器的应用也深入到各行各业,变频器的发展也在不断地推陈出新,功能越来越强大,可靠性也相应地提高。但是如果使用不当,操作有误,维护不及时,仍会发生故障或运行状况改变缩短设备的使用寿命。因此,日常的维护与检修工作显得尤为重要。2. 滤波电容 中间电路滤波电容:又称电解电容,其主要作用就是平滑直流电压,吸收直流中的低频谐波,它的连续工作产生的热量加上变频器本身产生的热量都会加快其电解液 的干涸,直接影响其容量的大小。正常情况下电容的使用寿命为5年。建议每年定期检查电容容量一次,一般其容量减少20%以上应更换
产品推荐