产品描述
西门子PLC 6ES7516-3UN00-0AB0详细说明
PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。
目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。
由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。
二:输入电路的形式
1、输入类型的分类
PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sinkCurrent拉电流),单端共点接电源负极为SRCE(sourceCurrent灌电流)。
2、术语的解释
SINK漏型
SOURCE源型
SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。
SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。
国内对这两种方式的说法有各种表达:
1)、根据TI的定义,sinkCurrent为拉电流,sourceCurrent为灌电流,
2)、由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。
3)、SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。
4)、SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。
5)、SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。
这种表述的笔者接触的较多,也是较容易引起混淆的说法。
接近开关与光电开关三、四线输出分NPN与PNP输出,对于无信号时NPN的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通,开关输出为低电平。
对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。
以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。
另一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC程序修改。原因是传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的传感器,这样的接法是无效的;另外输出的上拉电阻与下拉电阻阻值与PLC接口漏电流参数有很大关系。并非所有的传感器与PLC都可以通用,对于此类问题可以参考笔者的另一文《接近开关、光电开关的输出与负载接口问题》,在此不再赘述。
SINK漏型、SOURCE源型在下文有详细图解描述。
3、按电源配置类型
3.1、直流输入电路
如图1,直流输入电路要求外部输入信号的元件为无源的干接点或直流有源的无触点开关接点,当外部输入元件与电源正极导通,电流通过R1,光电耦合器内部LED,VD1(接口指示)到COM端形成回路,光电耦合器内部接收管接受外部元件导通的信号,传输到内部处理;这种由直流电提供电源的接口方式,叫直流输入电路;直流电可以由PLC内部提供也可以外接直流电源提供给外部输入信号的元件。R2在电路中的作用是旁路光电耦合器内部LED的电流,保证光电耦合器LED不被两线制接近开关的静态泄漏电流导通
当有源输入元件(霍尔开关、接近开关、光电开关、光幕传感器等)数量比较多,消耗功率比较大,PLC内置电源不能满足时,需要配置外置电源。根据需求可以配24VDC,一定功率的开关电源。外置电源原则上不能与内置电源并联,根据COM与外部共线的特点,SINK(sinkCurrent拉电流)输入方式时,外置电源与内置电源正极相连接;SRCE(sourceCurrent灌电流)输入方式时,外置电源与内置电源负极相连接。
4.2.5:简单判断SINK(sinkCurrent拉电流)输入方式,只需要Xn端与负极短路,如果接口指示灯亮就说明是SINK输入方式。共正极的光藕合器,可接NPN型的传感器。SRCE(sourceCurrent灌电流)输入方式,将Xn端与正极短路,如果接口指示灯亮就说明是SRCE输入方式。共负极的光藕合器,可接PNP型的传感器。
4.2.4:对于2线式的开关量输入,如果是无源触点,SINK与SRCE按上图的输入元件接法,对于2线式的接近开关,需要判断接近开关的极性,正确接入。我公司部分2线式的LJK系列接近开关也有不分极性即可接入接口的,具体参考附带产品说明书。
4.2、**高速双端输入电路
主要用于硬件高速计数器(HHSC)的输入使用,接口电压为5VDC,在应用上为确保高速及高噪音抗性通常采用双线驱动方式(Line-Drive)。如果工作频率不高与噪音低也可以采用5VDC的单端SINK或者SRCE接法,串联一个限流电阻转换成24VDC的单端SINK或者SRCE接法。
4.2.1、双输入端双线驱动方式(Line-Drive
设备与系统描述
在某企业的制丝工艺段中,PLC采用西门子S7-300系列PLC。S7-300系列PLC处理速度更快、系统资源裕量更大、通讯能力更强、性能更加稳定可靠,全面支持等时模式和运行中配置等功能,由此大幅降低了工程、培训等费用,是各种自动化功能的技术和经济性解决方案。机架上增加一个CP 343-1以太网模块,用于系统和上位调度计算机通讯。
现场分布式I/O采用具有Profinet接口的西门子的ET200S系列,用于采集现场的传感器信号(如光电开关、接近开关、限位开关等)和按钮指示灯信号。
电机驱动采用西门子ET200S的单相启动器、双相启动器或软启动器,每个ET200S从站带有一个IM151-3PN接口模板(双网口),可以支持Profinet总线的级联方式,IM151-3PN接口模板的供电采用单独供电方式,保证切断控制电源时,Profinet网络不受影响,通过它就可以和PLC之间建立网络通信。
对于需要精确的设备或一些专机设备,系统采用变频器对电机进行驱动。在该方案中,采用丹佛斯带Profinet总线通讯接口的现场安装的变频器FC302 IP55系列产品。采用Profinet总线的级联方式。配置输入输出电抗器、RFI滤波器。变频器的动力输出线缆采用屏蔽电缆,动力输出线缆和通讯电缆的屏蔽层可靠接地。Profinet总线模板的供电采用单独供电方式,保证切断动力电源时,Profinet网络不受影响。
在现场操作员终端,操作人员通过触摸屏终端对现场设备状态进行监控,当设备出现故障或需要进行维护时,可以通过终端操作来完成模式转换、故障处理、信息维护等操作。该方案采用的是西门子触摸屏MP377,通过Profinet和PLC通讯。
对于不支持Profinet总线的器件,该方案采用Profibus总线进行通信,并由IE/PB LINK 将现有的Profibus设备透明地连接到Profinet的设备。
2.
系统特点
现场总线技术在控制过程的应用,节省了大量的线缆、槽架、连接件,减少了系统的设计、调试、维护时间,方便地实现了现场控制设备之间以及设备与控制管理层之间的联系,为控制信息进入公共数据网络创造了条件。与地点无关的控制、高速通信、灵活的拓扑结构、真正的可互操作性和开放性等高级功能的特征,使其具有强大优势和广阔的发展前景。
采用基于工业以太网的开放式、跨供应商标准的Profinet,可实现从公司管理层直到现场层直接、透明的访问。Profinet基于现有成熟IT标准,并提供对TCP/IP的全面支持,用户能够毫不费力的与现有系统进行扩展及便捷集成。
3.
系统配置步骤
接下来,我们就以一个实例,一步一步教大家如何配置组态一个PROFINET IO系统。本实例项目是由一个S7-300 PLC , CP343-1(支持PROFINET IO Controller)和具有PN接口的ET200S组成。
第1步,新建一个项目,插入一个Simatic 300站,如图3-1所示:
第2步,在硬件组态中插入一个CP343-1,新建一个网络连接Ethernet (1),并且配置IP地址,如图3-2所示:
第3步,在CP343-1的右键中选择“插入PROFINET IO系统",如图3-3所示:第4步,在右边的PROFINET IO设备栏内,选择实际的远程IO设备,在PROFINET IO总线上插入一个ET200S站IM151-3PN,并且给给IM151-3PN配置它的设备名“IM151-3PN",如图3-4所示:第5步,在IM151-3PN中插入相应的DI和DO模块,如图3-5所示:
第6步,选中PROFINET IO总线,然后右键菜单选择“目标属性",如图3-6所示:
第7步,在PROFINET IO总线的属性中,在Communication allocation(PROFINET IO)选项内可配置PROFINET IO通讯占比,当有PROFINETCBA通讯存在时,必须给PROFINETCBA通讯预留一部分通讯比例,如图3-7所示:
第8步,配置IM151-3PN的更新时间,这个更新时间是根据设备的性能决定的,性能好的设备更新时间可达1ms,有的厂商提供的PROFINET IO设备较多也只能有8ms的更新时间,如图3-8所示:
第9步,配置IM151-3PN的属性,分配设备名,本例就为“IM151-3PN";设备号码本例配置为“1",Step7会自动分配,当你有2个以上的远程IO站时,设备号码不能重复,否则无法编译通过;设备的IP地址是由Step7自动分配的,你也可以手动指派IP地址;如图3-9所示:
*10步,编译硬件组态,如图3-10所示:
*11步,打开PST软件,扫描网络设备,如图3-11所示:
*12步,按照在Step7中的实际组态,分配IP地址,如图3-12所示:
*13步,下载IP地址至设备中,如图3-13所示:
*14步,下载后,设备已经有了IP地址了,如图3-14所示:
*15步,给IM151-3PN也分配IP地址,如图3-15所示:
*16步,下载硬件组态,如图3-16所示:
*17步,在线监视硬件组态,发现CP343-1有故障,原因是远程站IM151-3PN的设备名还未分配,如图3-17所示:
*18步,给IM151-3PN也分配指派设备名,如图3-18所示:
*19步,在弹出来的对话框中,选中你要指派设备名的设备,然后点击右边的“Assign name/指派名称"按钮,如图3-19所示:
*20步,可以看到IM151-3PN已经有了设备名(与硬件组态的设备名相同,PN IO 控制器才能依靠此设备名找到它),如图3-20所示:
*21步,再次在线监视硬件组态,发现此时PN IO系统工作正常,如图3-21所示:
至此,如何组态PN IO系统已经介绍完毕。还有一些注意点,如果你用的PLC是S7-300系列的,使用CP卡作为PN IO控制器,都需要在程序里调用PN_SEND和PN_RECV来驱动远程IO设备。而S7-400的PLC是不需要编程的,可以直接驱动远程IO设备。
产品推荐