• 西门子5SL6303-8CC
  • 西门子5SL6303-8CC
  • 西门子5SL6303-8CC

产品描述

产品规格模块式包装说明全新品牌西门值+ 包装说明 全新 - 产品规格子

5SL6303-8CC

滤池主站管理CCLINK网络上八个从站(每个从站监控三个滤池)共对24个滤池的1100点数据进行处理和交换;监控两台风机、两台反冲泵运行;对关键数据进行处理并上送到厂级站 。滤池主站的功能有:
① 动画监视。以动画形式实时显示24格滤池各个阀门开关状态、到位情况、故障发生情况等;显示各个滤格状态(包括正常过滤、冲洗、触摸屏状态、手动控制等);显示风机水泵运行及故障情况;实时显示水位值及1小时内滤格水位变化趋势。
② 监控两台风机、两台反冲泵运行。对风机变频器进行选择、变频器频率设置。
③ 实时操作。执行对滤池进行强冲;排水阀、气冲阀、水冲阀的统一管理(同一时刻只能打开一个阀门)。
④ 流程的选择。根据实际情况选择气水冲洗和单纯水冲流程。
⑤ 实时数据的显示。以数字和曲线形式实时显示24格滤池的水位及1小时内水位走势;以数字和矩形图形式实时显示24格滤池的运行时间。
⑥ 历史数据查询。触摸屏可存储三千条记录(保持三个月的运行参数不刷新)。记录包括:24个滤池冲洗发生时间结束时间;滤池所处状态(全自动/触摸监控);24格滤池各个阀门故障发生时间等。
⑦ 故障查询。当滤格阀门故障报警发生时,用户查看具体的故障类型、位置和发生时间。
⑧ 参数设置。可对滤池运行时间、运行水位;滤池水冲时间、气冲时间;阀门开关时限;启动反冲泵台数;风机变频器选择等,通过人机对话方式由技术人员设置,此功能只能通过密码进入滤池就地控制单元包括:单格滤池控制、C网络管理(CCLINK网络)、R网络管理(RS485网络)、人机界面、实时数据、故障诊断、风机及反冲泵监控等功能。
单格滤池控制执行自动过滤监测滤池水位,根据滤池水位的情况及时调整出水阀的开度,使滤池保持在过滤水位。当运行周期到或强冲或水头损失以达到时,滤池进行自动反冲洗。单格滤池控制软件流程如图六所示。
三、 系统运行
笔架山水厂普通快滤池系统在投入运行五个月来,一直稳定可靠。见图七及图八所示滤池车间改造前后滤池控制柜比较。滤池水质也有所提高,且运行周期比过去延长50%。工人的劳动强度得到大幅降低,激发工人强烈的学习兴趣。系统的自诊断功能充分发挥作用,设备的维护率得到了很大提高。基本上能实现无人值守。
四、 结束语
现场总线技术,这种网络通信技术渗透于自动控制仪表和系统中的结果。在自动控制领域已经得到越来越多的应用,毋庸置疑,该技术具有广大前景

202202231632210850864.jpg202202231632207552624.jpg

半导体是导电性能介于导体和绝缘体之间的一种物质。如用以制造二极管的主要材料--硅和锗,它们就是一种半导体。硅和锗都属于四价元素。当在半导体中进行微量的"掺杂"的时候,半导体的导电能马上会成百万倍的增加。"掺杂",就是在半导体中加进微量的、有用的、特定的杂质。如磷或硼等。 
如在硅单晶半导体中掺入少量的五价元素(P),则磷原子就会与硅原子组成共价键结构。由于磷原子的数目比硅原子要少得多,因此整个晶体结构基本不变,只是某些位置上硅原子被磷原子所代替。由于具有五个价电子,所以一个磷原子同相邻的四个硅原子组成共价键时,还多余一个价电子。这个价电子没有被束缚在共价键内,只受到磷原子核的吸引,所以它受到的束缚力比较小,很容易挣脱束缚变成自由电子,从而使硅单晶中自由电子的数目大大增加。而磷原子失去一个价电子之后,也成了带正电的磷离子。这种半导体主要靠电子导电,叫做电子型半导体,或简称为N型半导体。若在硅单晶中掺入少量的三价元素,例如硼(B),则硼原子也会与硅原子组成共价键结构,但是这种结构有别于上述的那种结构。因为硼原子只有三个价电子,当它同相邻的四个硅原子组成共价键时,还缺少一个价电子,因而在一个共价键上要出现一个空位置。为了满足组成四对共价键的需要,这个空位置很容易接受一个外来电子的填补,而附近硅原子的共有价电子在热激发下,也很容易转移到这个空位置上来于是就在那个硅原子的共价键上出现了一个空穴,而硼原子接受了一个价电子之后,也就成了带负电的硼离子。这样,每个硼原子都能接受一个价电子,同时附近产生一个空穴,从而使硅单晶中的空穴载流子数目大大增加。这种半导体主要是靠空穴导电,叫做空穴型半导体,或简称为P型半导体。 
如果设法把P型半导体和N型半导体制造在一起,由于P型与N型之间空穴和电子的浓度差别较大,故P型区中的空穴要从P型区扩散到N型区,N型区中的电子要从N型区扩散到P型区。扩散到的结果,就在交界面附近的P型区中形成很薄一层不能移动的负离子。同时在交界面附近的N型区域中,形成很薄一层不能移动的正离子,在PN交界面两边,就形成了一边带正荷,另一边负电荷的层很薄的区域,称为"空间电荷区"。这就是PN结。PN结内由于空穴和电子所产生的电场称为"内电场"它的方向是由N型区指向P型区。由于这个内电场力的作用,使得当P型区中的空穴想越过空间电荷区而向N型区扩散时,受到内电场的阻力而被拉加P型区。因为这时候空穴的扩散方向刚好与内电场的方向相反。同理,当N型区中的电子想越过空间电荷区而向P型区扩散时,由于电子的扩散方向刚好与内电场的阻力而被拉回N型区。总之,内电场总是要阻得多数载流子。且电能运动的微小粒子的扩散运动,也就是要使空穴流向P型区,电子流向N型区。我们把载流子在电场作用下的定向运动中做漂移运动。显然,载流子的漂移运动的方向是跟扩散运动的方向相反的。漂移作用同扩散作用是互相对立的。由于空间电荷区的电场对电子和空穴的扩散运动起阻碍作用,所以空间电荷区又称为阻挡层。随着扩散运动与漂移运动的继续进行,阻挡层的宽度逐渐趋向于一定。尽管这时扩散运动与漂移运动仍在不断地进行,但是从P区向N区扩散过去多少空穴,同时也有同样多的空穴在电场力的作用下漂移加到P区来。对电子也是一样。也即扩散运动与漂移运动实现了动态平衡。此时,空间电荷区的宽度保持恒定,阻挡层的电场强度保持一定。 
由于电场的方向是向电势降落的方向,因此空间电荷区内正离子一边的电势高,负离子一边的电势低,所以空间电荷区的两边存在着一个电势差,也即PN结电势差,称为"内建电势差",或称为"势垒"。若用UD表示,则硅制成的PN结UD=0.6~0.8V左右;而用锗制成的PN结UD=0.2~0.3V左右。 
由于电场的方向是向电势降落的方向,因此空间电荷区内正离子一边的电势高,负离子一边的电势低,所以空间电荷区的两边存在着一个电势差,也即PN结电势差,称为"内建电势差",或称为"势垒"。若用UD表示,则硅制成的PN结UD=0.6~0.8V左右;而用锗制成的PN结UD=0.2~0.3V左右


http://zhangqueena.b2b168.com

产品推荐