• 西门子5SL4210-6CC
  • 西门子5SL4210-6CC
  • 西门子5SL4210-6CC

产品描述

产品规格模块式包装说明全新品牌西门值+ 包装说明 全新 - 产品规格子

5SL4210-6CC

随着社会经济的发展,工业的迅速兴起,使得一些10KV配电系统大幅度增加,配电系统的简便性、可靠性、安全性、节能性、性价比显得尤其重要。

目前,传统的10KV配电系统还是采用继电器系统和分布监测计量、分布控制方式,而采用PLC(可编程序控制器)系统集中控制和集中监测计量方式,有利于提高配电系统的运行管理自动化水平,保证配电的安全稳定,还能减少运行人员的工作强度提,。


2、 继电器系统和PLC系统的比较

PLC(可编程序控制器)是近几十年来发展起来的一种新型工业控制器,由于它编程灵活,功能齐全,应用广泛比继电器系统的控制简单,使用方便,抗干扰力强,性价比高,工作寿命高,而其本身具有体积小,重量轻,耗电省等特点。继电器系统有明显的缺点:体积大,可靠性低,工作寿命短,查找故障困难,特别是由于它是靠硬连线逻辑构成系统,所以接线复杂,对于生产工艺的变化的适应性差,不便实现集中控制;而PLC的安装和现场接线简便,可以应用其内部的软继电器简化继电器系统的繁杂中间环节,实现软接线逻辑构成系统,方便集中控制,除此之外,PLC还具有自诊断、故障报警、故障报警种类显示及网络通讯功能,便于操作和维修人员检查FCS是由PLC发展而来的;而在另一些行业,FCS又是由DCS发展而来的,所以FCS与PLC及DCS之间有着千丝万缕的联系,又存在着本质的差异。本文试就PLC、DCS、FCS三大控制系统的特点和差异作一分析,指出它们之间的渊源及发展方向。 
 
    摘 要:本文对PLC、DCS、FCS三大控制系统的特点和差异进行了分析,指出了三种控制系统之间的渊源及发展方向。 
 
    关键词:可编程序控制器(PLC),分散控制系统(DCS),现场总线控制系统(FCS)
    前言 
 
    上世纪九十年代走向实用化的现场总线控制系统,正以迅猛的势头快速发展,是目前世界上较新型的控制系统。现场总线控制系统是目前自动化技术中的一个热点,正受到国内外自动化设备制造商与用户越来越强烈的关注。现场总线控制系统的出现,将给自动化领域带来又一次,其深度和广度将**过历史的任何一次,从而开创自动化的新纪元。 
 
   在有些行业,FCS是由PLC发展而来的;而在另一些行业,FCS又是由DCS发展而来的,所以FCS与PLC及DCS之间有着千丝万缕的联系,又存在着本质的差异。本文试就PLC、DCS、FCS三大控制系统的特点和差异作一分析,指出它们之间的渊源及发展方向。
     PLC、DCS、FCS三大控制系统的基本特点 
 
    目前,在连续型流程生产自动控制(PA)或习惯称之谓工业过程控制中,有三大控制系统,即PLC、DCS和FCS。它们各自的基本特点如下:
   1 PLC 
 
    (1)从开关量控制发展到顺序控制、运送处理,是从下往上的。
    (2)连续PID控制等多功能,PID在中断站中。
    (3)可用一台PC机为主站,多台同型PLC为从站。
    (4)也可一台PLC为主站,多台同型PLC为从站,构成PLC网络。这比用PC机作主站方便之处是:有用户编程时,不必知道通信协议,只要按说明书格式写就行。
    (5)PLC网格既可作为独立DCS/TDCS,也可作为DCS/TDCS的子系统。
    (6)大系统同DCS/TDCS,如TDC3000、CENTUMCS、WDPFI、MOD300。
    (7)PLC网络如Siemens公司的SINEC—L1、SINEC—H1、S4、S5、S6、S7等,GE公司的GENET、三菱公司的MELSEC—NET、MELSEC—NET/MINI。
    (8)主要用于工业过程中的顺序控制,新型PLC也兼有闭环控制功能。
    (9)制造商:GOULD(美)、AB(美)、GE(美)、OMRON(日)、MITSUBISHI(日)、Siemens(德)等。
    2 DCS或TDCS 
 
    (1)分散控制系统DCS与集散控制系统TDCS是集4C(Communication,Computer, Control、CRT)技术于一身的监控技术。
    (2)从上到下的树状拓扑大系统,其中通信(Communication)是关键。
    (3)PID在中断站中,中断站联接计算机与现场仪器仪表与控制装置。
    (4)是树状拓扑和并行连续的链路结构,也有大量电缆从中继站并行到现场仪器仪表。
    (5)模拟信号,A/D—D/A、带微处理器的混合。
    (6)一台仪表一对线接到I/O,由控制站挂到局域网LAN。
    (7)DCS是控制(工程师站)、操作(操作员站)、现场仪表(现场测控站)的3级结构。
    (8)缺点是成本高,各公司产品不能互换,不能互操作,大DCS系统是各家不同的。
    (9)用于大规模的连续过程控制,如石化等。
    (10)制造商:Bailey(美)、Westinghous(美)、HITACH(日)、LEEDS & NORTHRMP(美)、SIEMENS(德)、Foxboro(美)、ABB   (瑞士)、Hartmann & Braun(德)、Yokogawa(日)、Honewell(美国)、(美)等。
    3 FCS 
 
    (1)基本任务是:本质(本征)安全、危险区域、易变过程、难于对付的非常环境。
    (2)全数字化、智能、多功能取代模拟式单功能仪器、仪表、控制装置。
    (3)用两根线联接分散的现场仪表、控制装置、PID与控制中心,取代每台仪器两根线。
    (4)在总线上PID与仪器、仪表、控制装置都是平等的。
    (5)多变量、多节点、串行、数字通信系统取代单变量、单点、并行、模拟系统。
    (6)是互联的、双向的、开放的取代单向的、封闭的。
    (7)用分散的虚拟控制站取代集中的控制站。
    (8)由现场电脑操纵,还可挂到上位机,接同一总线的上一级计算机。
    (9)局域网,再可与internet相通。
    (10)改变传统的信号标准、通信标准和系统标准入企业管理网。
    (11)制造商:美Honeywell 、Smar 、Fisher— Rosemount、 AB/Rockwell、Elsag— Bailey 、Foxboro 、Yamatake 、日Yokogawa、欧 Siemens、 GEC—Alsthom 、Schneider、 proces—Data、 ABB等。
    (12)3类FCS的典型
      1)连续的工艺过程自动控制如石油,其中“本安防爆”技术是**重要的,典型产品是FF、World FIP、Profibus—PA;
      2)分立的工艺动作自动控制如汽车制造机器人、汽车,典型产品是Profibus—DP、CANbus;
      3)多点控制如楼宇自动化,典型产品是LON Work、Profibus—FMS。 
 
    从上述基本要点的描述中,我们是否注意到一点,用于过程控制的三大系统,没有一个是针对电站而开发的,或者说,在他们开发的初期,都并非以电站做系统的可以选择控制对象。而在这些系统的使用说明中也绝不把电站做为可以选择适用范围,有的在适用范围中根本就不提电站。现在奇怪的是,这三大控制系统,尤其是DCS、PLC,都在电站得到了广泛应用,而且效果也非常好


在数控机床中,通常用可编程控制器(PLC)对机床开关量信号进行控制。PLC可靠性高,使用方便。但在大多数数控机床,特别是经济型数控机床中,要求的输入输出点数并不多,通常在60点以下,因此,为了降低数控机床成本,在基于工业PC机的数控系统中,可以采用开关量I/O板加外接继电器,配合主机的软件对机床开关进行控制。但如果PC机采用单任务操作系统(如DOS),数控系统的所有任务运行都置于一个总体的消息循环中,软件的模块化和可维护性较差,系统故障的风险相对集中,而且不能充分利用PC机系统资源。而采用非实时多任务操作系统(如Windows)时,Win32API的设计没有考虑到实时环境的开发用途,其系统调用的效率不高,不能满足数控系统PLC控制的实时性要求。

 

    为此,本文提出一种基于RT-Linux操作系统的嵌入式PLC,利用RT-Linux的开放性、模块化和可扩展性的系统结构特性和多线程/多任务的系统环境,在保证实时性的同时,使故障风险相对分散。

 

    数控系统嵌入式PLC的硬件结构

 

    数控系统硬件建立在通用工业PC的开放体系之上,数控系统嵌入式PLC硬件包括:工控机及其外围设备,基于ISA总线的开关量输入输出接口卡,光电隔离模块,继电器输出模块。其结构如图1所示。    

    工控机采用RedHatLinux810+RTLinux311操作系统,数控系统的人机界面、数控代码处理、轨迹规划、参数管理以及PLC控制都通过工控机由软件来实现,不需要独立的PLC控制器,减少了数控系统对硬件的依赖,有利于提高系统的开放性。

 

    I/O输入输出信息通过PC机I/O接口卡实现主机与伺服接口模块和I/O接口模块之间的信息交换,PC机I/O接口卡基于ISA或者PCI总线。

 

 

    RT-Linux的体系结构

 

    RT-Linux是基于Linux系统并可运行于多种硬件平台的32位硬实时操作系统(hardreal-timeoperatingsystem)。

 

    它继承了MERT系统的设计思想,即以通用操作系统为基础,在同一操作系统中既提供严格意义上的实时服务,又提供所有的标准POSIX服务。RT-Linux源代码公开,易于修改,使系统成本降低,源代码的公开使数控系统的开发摆脱了对国外软件公司的依赖,有利于提高数控软件国产化程度。

 

    RT-Linux是基于Linux并可运行于多种硬件平台的多实时操作系统。通过修改Linux内核的硬件层,采用中断仿真技术,在内核和硬件之间实现了一个小而高效的实时内核,并在实时内核的基础上形成了小型的实时系统,而Linux内核仅作为实时系统较低**级的任务运行。对于普通X86的硬件结构,RT-Linux拥有出色的实时性和稳定性,其较大中断延迟时间不**过15μs,较大任务切换误差不**过35μs。这些实时参数与系统负载无关,而取决于计算机的硬件,如在PII350,64M内存的普通PC机上,系统较大延迟时间不**过1μs。RT-Linux按实时性不同分为实时域和非实时域,其结构如图2所示。  

实时域在设计上遵循实时操作系统的设计原则,即系统具有透明性、模块化和可扩展性。RT-Linux的实时内核由一个核心部分和多个可选部分组成,核心部分只负责高速中断处理,支持SMP操作且不会被底层同步或中断例程延迟或重入。其它功能则由可动态加载的模块扩充。RT-Linux把不影响系统实时性的操作(即非实时域的操作)都留给了非实时的Linux系统完成。基于多任务环境的Linux为软件开发提供了丰富的系统资源,如多种进程间通讯机制,灵活的内存管理机制。

 

    嵌入式PLC的设计及实现

 

    嵌入式PLC的模块组成

 

    数控系统的PLC控制模块实时性要求较高,因而必须在系统的实时域内运行。根据通用数控系统的PLC控制以及数控系统软件模块化设计的要求,将数控系统的PLC控制模块作为RT-Linux系统的实时任务之一,其**级和调用周期取决于数控系统各任务的实时性要求以及控制要求的响应时间。PLC控制模块主要完成数控系统的逻辑控制,而被控制的输入输出也就是I/O的输入输出由PC机I/O接口卡输入输出模块来完成,即完成数控系统的PLC控制需要两个RT-Linux实时任务,如图3所示,这两个任务分别为RT-Task1(以下称“适配卡输入输出”)、RT-Ta(以下称“PLC控制”)。

 

    图3是基于RT-Linux系统的嵌入式PLC实时任务关系图,其中适配卡输入输出主要是完成数控系统的输入输出,即各轴位置控制命令的输出、I/O的输出、I/O输入以及位置反馈输入,它实际上是数控系统控制卡的设备驱动模块,其**级在数控系统的各实时任务中为较高级。根据其硬件特征以及运动控制要求,其响应周期为100μs,响应时钟周期由PC机I/O接口卡上的硬件定时器产生。根据RT-Linux系统对硬件中断的响应机制,输入输出控制任务的实时性是可以保证的,这一点在我们的数控系统已经得到验证。

    图3中PLC控制主要是完成数控系统的PLC控制功能,其任务**级低于适配卡输入输出,同时也低于数控系统的精插补实时任务和位置伺服实时任务。根据通用数控系统的PLC控制要求,确定其响应周期为5ms,响应周期由RT-Linux的软件定时器产生,根据RT-Linux系统的实时多任务调度机制,PLC控制任务的实时性是可以保证的。在实际应用中也得到验证。

 

    嵌入式PLC的实时任务模块数据通讯

 

    完成数控系统PLC控制的两个实时任务之间由于需要输入输出的数据量(一般情况下为64输入,64输出,但输入输出根据需要还可以扩展)不太大,因而采用共享内存的通讯方式,在适配卡输入输出和PLC控制

 

    两个实时任务之间开两块共享内存,一块用于适配卡向PLC控制传输I/O口状态信息,另一块用于PLC控制向适配卡输入输出任务传输经PLC逻辑处理后的控制信息。

 

    在这里,两个实时任务间不采用RT-FIFO进行通讯的原因在于这两个实时任务间通讯的数据量不是很大,而这两个实时任务运行周期差别较大,采用RT-FIFO传输数据,为了避免FIFO的阻塞,相应地要增加两个任务间的协调机制,这样的通讯效果未必比采用共享内存好,而且共享内存的读写速度比FIFO相对较快。

 

    嵌入式PLC的实时任务的实现

 

    适配卡输入输出为动态可加载模块,适配卡输入输出模块(任务)以100μs为周期的硬件定时中断,完成各轴位置控制指令和I/O的输出、各轴位置反馈值和I/O的输入,适配卡输出值来自于位置伺服任务和PLC控制任务,输入值来自于适配卡的输入接口。PLC控制模块(任务)同样也是一个动态可加载模块,它以5ms的软定时,周期性地从它与总控模块通讯的RT-FIFO读取控制信息(如M指令,S指令及T指令),同时从它与适配卡输入输出模块通讯的共享内存中读取I/O信息,然后进行逻辑处理,最后将写入共享内存供适配卡输入输出模块读取并输出。

 

    结论

 

    目前该嵌入式PLC模块已成功应用于清华大学精仪系制造工程研究所THHP-III数控系统(基于RedHatLinux8.0+RTLinux3.1)中,该模块可以满足对普通数控系统和加工中心PLC控制要求。



http://zhangqueena.b2b168.com

产品推荐