产品描述
西门子V90电机1FL6061-1AC61-2AA1
SINAMICS G150 装置可配备有带VPL的dv/dt滤波器(电压峰值限制器)。这可以同时限制电压上升率dv/dt 和峰值电压,把它们限制在IEC 60034-25 规定的极限值以下。
在改造项目中,这会特别有益:使用此滤波器,原先不是设计用于搭配变频器运行的电机也可以从变频器供电了。
带VPL的dv/dt滤波器可以节省大量的空间,这是因为可以*集成到电气控制柜中 - 甚至是大额定功率的型号。此外,它还具有*的能效:切断的电压峰值没有浪费变成热能消耗在电阻器上,而是馈入了直流链路。
To the top of the page
采用了半导体技术的IGBT 和革新的冷却方式,因而结构非常紧凑,运行异常安静。
方便维修的性能使用户可以轻松的操作所有模块。
使用如标准的 PROFIBUS 通讯接口和各种模拟和数字接口,可将它们轻松集成到自动化解决方案中。
由于可以方便、快速的更换各个模块和电源组件,从而提高了工厂的可用性。
在带有图形和文字显示能力的 LCD 屏,并且界面友好的AOP30 操作员界面上,操作员可以使用直观的菜单方便的进行启动调试和参数化。
节能:如果不需要电机,可以使用此功能将其*关闭。如果工艺控制器的偏差低于预定义的限制值一定的时间(可参数化),该操作会自动完成。
增强节能:此功能可以用于延长驱动系统变频器关闭的时间,实现节能功能 - 从而达到更加节能以及避免不必要的起动和停止泵机的目的。而且有一项附带功能 - 管道清洁。
维护清洁:恒定的流速意味着泵送液体中悬浮的颗粒会随着时间沉淀下来。这会减小管道的有效直径,甚至堵塞泵机。MaintenanceCleaning(维护清洁)功能用于迅速的提高泵机的速度从而防止这种沉淀堆积。
防止内壁沉淀:如果废水处理系统中液体容器的液面高度长期保持恒定高度,则会在容器边缘产生沉积。为了防止这种沉积,WallDeposits-Prevention(防止内壁沉积)功能会改变工艺控制器的设置值,使容器液面高度不停的上下浮动
西门子变频器异步电动机必须从电网吸收滞后性质的无功,用于激磁。
28 . 一个线圈组通上交流电,其磁动势随着时间的变化具有脉振性质。单个线圈通交流电,其磁动势随着时间的变化也具有脉振性质。
29 . 西门子变频器同步发电机并网时,要求其三相端电压同电网三相电压具有相同的:频率、幅值、波形、相序(和相位)等。
30 . 同步电机的转子有隐较式和凸较式两种。
31 . 鼠笼转子的等效相数等于其槽数,而每相的等效匝数则为1/2。
32 . 三相对称交流绕组,通对称三相交流电流,其基波合成磁动势是一个圆形旋转的磁动势,其旋转的方向是从**前相绕组轴线转向滞后相轴线,再到下一个滞后相的轴线。
33 . 三相变压器的三相绕组之间有星形和三形等两种连接方法;磁路则有组式和心式等两种结构。
34 . 三相变压器的6个奇数联结组号为1、3、5、7、9、11。而6个偶数联结组号则为0、2、4、6、8、10。
35 . 交流绕组中,每较每相槽数q =q = Z/2p/m(定槽数为Z,较对数为p,相数为m)。. 在交流绕组中,既有采用120o相带的,也有采用60o相带的。其中60o相带的基波绕组系数、反电动势较高。
36 . 对称分量法可用于分析变压器、同步电机的不对称运行,其应用的前提是系统为线性的,因而可以应用叠加原理,将不对称的三相电量系统,分解为正序、负序、零序等三组对称的三相系统。
37 . 短距系数的计算公式是ky1 = sin(p/2×y1/t),其物理意义是短距导致反电势(或磁动势)与整距相比所打的折扣(或减小的系数)。而分布系数的计算公式则是kq1 = sin(qa1 /2 ) / q / sin(a1 / 2),其物理意义是q个线圈依次相差a1电度时,反电势(或磁动势)相对集中的情况所减小的系数(或打的折扣)。
38 . 电流互感器是用来测量电流,其二次侧不能开路。而电压互感器则是用来测量电压,其二次侧不能短路。
39 . 电机是将机械能转换为电能(或相反),或者将一种交流电压等级改变为另外一种交流电压等级的装置。从能量转换度看,电机可以分为变压器、电动机、发电机等三类。
40 . 槽距电度a1的计算公式为a1 = p×360o/Z。可见槽距电度a1等于槽距机械度am的p倍。
41 . 变压器绕组归算的原则是:在归算前后,保证绕组的磁动势不变,以及保证绕组的有功和无功不变。
42 . 变压器的效率特性曲线的特点是存在一个较大值,即当可变损耗等于不变损耗时达到较大值。
43 . 变压器的空载试验通常在低压侧加电压和进行测量。变压器的短路试验通常在高压侧加电压和进行测量。
44 . 变压器并联运行时,空载无环流的条件是:变比相同以及联结组号相同。
45 . 变压器并联运行时,负载分配原则是:变压器负载电流的标幺值与短路阻抗的标幺值成反比。并联运行时变压器的容量能够得到充分利用的条件是:短路阻抗的标幺值要相等,且它们的阻抗也要相等
怎样通过DP通讯获得6SE70和6RA70装置的内部数据
在实际应用中,经常需要通过DP总线获取6SE70变频器和6RA70直流调速器的内部数据,如:输出的电压、电流、电机实际转速等。由于6RA70直流调速器与6SE70变频器使用相同的DP通讯板卡—CBP2板,因而它们在PLC侧的组态和编程方法基本*(具体实现方法请参考下载中心文档A0049,《驱动通讯基础》),在实际应用中仅发送的控制字稍有不同。为了获取6SE70变频器和6RA70直流调速器的,可以使用过程数据PZD。
1使用PZD传送装置内部数据
1.1 6SE70中的实现方法与常用连接器
根据《6SE70使用大全V3.4使用大全》功能图125,参数P734.01~P734.16为变频器发送给DP主站的16个PZD字的参数化接口。P734.01默认值为K0032,代表通过*个PZD将状态字1发送的DP主站。同理若要求用*3个PZD将变频器输出电流值传给DP主站,则 P734.03 = K0022(Output Amps);这样在DP主站侧所接收的*3个PZD的数值就是变频器输出电流。如图1.1所示,可以通过参数r735.01到.16来从变频器侧读数所发送的数值。
图1.1 6SE70过程数据PZD参数化接口
常用连接器号:
KK0020 实际速度
K0023 输出电压
K0025 直流母线电压
K0030 控制字1
K0031 控制字2
K0032 状态字1
K0033 状态字2
(更多内容请参考《6SE70使用大全V3.4使用大全》连接器表)
1.2 6RA70中的实现方法与常用连接器
根据《 6RA70 系列V3.1全数字直流调速装置中文说明书》功能图Z110,参数U734.01~U734.16为调速器发送给DP主站的16个PZD字的参数化接口。如图1.2:默认的U734.01=K0032(状态字1),U734.02=K0167(实际转速),U734.04=K0033(状态字2),若想要用*5个PZD将调速器器输出实际电枢电压值传给DP主站,则 U734.05 = K0291;这样在DP主站侧所接收的*5个PZD的值就是实际电枢电压值。
图1.2 6RA70 过程数据PZD参数化接口
常用连接器号:
K0107 6 个电流波头的平均值
K0118 电枢电流给定值
K0265 励磁电流调节器输入的实际值
K0030 控制字1
K0031 控制字2
K0032 状态字1
K0033 状态字2
(更多内容请参考《 6RA70 系列V3.1全数字直流调速装置中文说明书》连接器表)
2注意事项:
2.1双字的传送
传送双字时,需要注意必须连续将两个PZD都设置为同样的KK连接器才能完整传送32位的双字。如6SE70变频器从*5个PZD开始传送实际频率KK0148到DP主站,则需设置P734.05 = KK0148, P734.06 = KK0148;否则仅能将双字KK0148的高16位传送过去。
2.2使用16个PZD
5种PPO类型中,PPO5可以支持zui多的10个PZD, CBP2板通讯支持zui多16个PZD。若想组态做多于10个PZD的通讯可以选择DP从站时使用"MASTERDRIVES MASTER CBP2 DPV1",这样就可以继续选择PPO类型,zui高支持16个PZD。此种方法zui多可以组态40个字节的输入和40个字节的输出,总数不能**过80个字节。
一.PROFINET 通信口:
S7-1200 CPU 本体上集成了一个 PROFINET 通信口,支持以太网和基于 TCP/IP和UDP 的通信标准。这个PROFINET 物理接口是支持10/100Mb/s的 RJ45口,支持电缆交叉自适应,因此一个标准的或是交叉的以太网线都可以用于这个接口。使用这个通信口可以实现 S7-1200 CPU 与编程设备的通信,与hmi触摸屏的通信,以及与其它 CPU 之间的通信。
二.支持的协议和较大的连接资源
S7-1200 CPU 的PROFINET 通信口支持以下通信协议及服务
· TCP
· ISO on TCP ( RCF 1006 )
· UDP(V1.0 不支持)
· S7 通信
三.硬件版本 V4.1 支持的协议和较大的连接资源:
S7-1200的连接资源
分配给每个类别的预留连接资源数为固定值;您无法更改这些值。 但可组态 6个"可用自由连接"以按照应用要求增加任意类别的连接数。
可连接资源
● 示例1: 1 个 PG 具有 3 个可用连接资源。 根据当前使用的 PG 功能,该 PG 实际可能使用其可用连接资源的 1、2 或 3。 在 S7-1200 中,始终保证至少有 1 个 PG,但不允许**过 1 个 PG。
在CPU属性>常规>连接资源显示:
连接资源显示
四.HMI连接资源
示例2:HMI 具有 12 个可用连接资源。 根据您拥有的 HMI 类型或型号以及使用的 HMI 功能,每个 HMI 实际可能使用其可用连接资源中的 1 个、2 个或 3 个。 考虑到正在使用的可用连接资源数,可以同时使用 4 个以上的 HMI。 HMI 可利用其可用连接资源(每个 1 个,共 3 个)实现下列功能:
· 读取
· 写入
· 报警和诊断
以上示例共有5个HMI设备访问S7-1200,占用了S7-1200的12个HMI连接资源。
对于S7-1200 V4.1以上版本,有6个动态连接资源可以用于HMI连接。所以它们的较大HMI连接资源数可以达到18个。对于之前的版本只能用预留的HMI连接资源用于HMI访问。
HMI设备占S7-1200的HMI连接资源个数
基于 WinCC TIA Portal的组态:
注:"资源数(默认)"是当HMI与S7-1200在一个项目中组态HMI连接时,会占用S7-1200的组态的HMI连接个数。
如图:示例中HMI_2 为精智面板。
HMI_2 为精智面板
HMI_2 为精智面板
这个连接个数是这个HMI设备所能占用S7-1200的较大HMI连接个数,可以作为选型参考。
· 目前Smart pannel不支持S7-1200
· 可以访问S7-1200的HMI面板的其他信息
五.硬件版本 V3.0 支持的协议和较大的连接资源:
· 3个连接用于操作面板
· 1个连接用于编程设备(PG)与 CPU 的通信
· 8个连接用于Open IE ( TCP, ISO on TCP, UDP) 的编程通信,使用T-block 指令来实现
· 3个连接用于S7 通信的服务器端连接,可以实现与S7-200,S7-300以及 S7-400 的以太网S7 通信
· 8个连接用于S7 通信的客户端连接,可以实现与S7-200,S7-300以及 S7-400 的太网S7 通信连接数是固定不变的,不能自定义。
注意:建立被动的TCP 、ISO on TCP 和UDP的连接时,建议使用端口范围: 2000~5000。一些端口号和TSAP 号是受到限制不能被使用的。 下列端口号和TSAP号不能使用:
· ISO TSAP (passive): 01.00, 01.01, 02.00, 02.01, 03.00, 03.01
· TCP/UDP port (passive): 20, 21, 25, 80, 102, 135, 161, 34962 … 34964,53, 80, 162, 443, 520, 9001
六.硬件版本 V2.0~V2.2 支持的协议和较大的连接资源:
· 3个连接用于非 Comfort pannel触摸屏或2个连接用于Comfort pannel与 CPU 的通信
· 1个连接用于编程设备(PG)与 CPU 的通信
· 8个连接用于Open IE ( TCP, ISO on TCP, UDP) 的编程通信,使用T-block 指令来实现
· 3个连接用于S7 通信的服务器端连接,可以实现与S7-200,S7-300以及 S7-400 的以太网S7 通信
· 8个连接用于S7 通信的客户端连接,可以实现与S7-200,S7-300以及 S7-400 的以太网S7 通信
七.硬件版本 V1.0 S7-1200
· 3个连接用于非 Comfort pannel触摸屏或2个连接用于Comfort pannel与 CPU 的通信
· 1个连接用于编程设备(PG)与 CPU 的通信
· 8个连接用于Open IE ( TCP, ISO on TCP) 的编程通信,使用T-block 指令来实现
· 3个连接用于S7 通信的服务器端连接,可以实现与S7-200,S7-300以及 S7-400 的以太网S7 通信
西门子1200通信实例图
八.物理网络连接
· S7-1200 CPU的PROFINET 口有两种网络连接方法:直接连接:当一个S7-1200 CPU与一个编程设备,或是HMI ,或是另一个PLC通信时,也就是说只有两个通信设备时,实现的是直接通信。直接连接不需要使用交换机,用网线直接连接两个设备即可,如图1. 所示。
西门子1200以太网通信
图1. 通信设备的直接连接
网络连接:当多个通信设备进行通信时,也就是说通信设备为两个以上时,实现的是网络连接,如图2. 所示。多个通信设备的网络连接需要使用以太网交换机来实现。可以使用导轨安装的西门子 CSM1277 的 4 换机连接其它 CPU 及 HMI 设备。CSM1277 交换机是即插即用的,使用前不用做任何设置。
图2. 多个通信设备的网络连接(图:network connection)① CSM1277 以太网交换机
PLC与PLC之间通信的过程
1. 实现两个CPU 之间通信的步骤① 建立硬件通信物理连接:由于S7-1200 CPU 的PROFINET 物理接口支持交叉自适应功能,因此连接两个 CPU 既可以使用标准的以太网电缆也可以使用交叉的以太网线。两个CPU的连接可以直接连接,不需要使用交换机。② 配置硬件设备:在 "Device View" 中配置硬件组态。③ 配置*IP 地址:为两个CPU 配置不同的*IP 地址④ 在网络连接中建立两个 CPU 的逻辑网络连接⑤ 编程配置连接及发送、接收数据参数。在两个 CPU 里分别调用TSEND_C或TSEND、TRCV_C或TRCV 通信指令,并配置参数,使能双边通信。
2. 配置 CPU之间的逻辑网络连接配置完 CPU 的硬件后,在项目树 "Project tree">"Devices & Networks" >"Networks view"视图下,创建两个设备的连接。要想创建PROFINET 的逻辑连接,用鼠标点中**个 PLC 上的PROFINET通信口的绿色小方框,然后拖拽出一条线,到另外一个PLC 上的PROFINET通信口上,松开鼠标,连接就建立起来了,如图3. 所示。
图3. 建立两个CPU之间的连接
产品推荐