• 西门子6ES7221-1BH22-0XA8现货供应
  • 西门子6ES7221-1BH22-0XA8现货供应
  • 西门子6ES7221-1BH22-0XA8现货供应

产品描述

产品规格模块式 包装说明全新 品牌西门值+ 包装说明 全新 - 产品规格子 现场安装

西门子6ES7221-1BH22-0XA8现货供应

  采用还原焰烧成,具有如下优点:
    1.含Fe2O3量较高的原料.可以避免Fe2O3在高温分解时放出氧,到使坯体发泡、在氧化气氛下,Fe2O3在1250-1370℃分解产生氧气,造成坯体发泡。在还原气氛下,会发生如下反应: 2Fe2O3+2CO = 4FeO+2CO2(大量分解在1100℃)在低于Fe2O3分解的温度下即完成了还原反应,避免了发泡。
    2.FeO与SiO2等形成亚铁硅酸盐,呈淡青的色调,使瓷器具有白如玉的特点。
    3.促进盐较早分解,避免釉层封闭后气体逸出而起泡。
    4.亚铁硅酸盐是低熔点的玻璃,促进坯体烧结,在1300℃左右的温度下,与氧化焰烧成者相比较,坯体的气孔率大为降低,减弱了散射的影响,相对增加了半透明度。
    5.窑内火焰长而柔,保证了热强度不大的和缓的软火,有利于釉沿坯体均匀的熔融。
    目前,在世界上高档瓷中,还原焰产品居多。我国南方瓷区及北方少数几个瓷区虽然也采用了还原焰烧成,但由于所采用的窑炉多为简易窑炉或小型抽屉窑,温差大,能耗高,所烧产品稳定性差,较大的制约了产品的质量。黄冈市华窑中洲窑炉有限公司作为全国较大的日用陶瓷窑炉生产企业,很早就注意到了这个问题,并对此展开了研究。并且于2000年7月与广东潮州宏华工艺陶瓷有限公司成功合作,在国内家自主开发出了48m液化气还原焰辊道窑,烧成温度达到了1410℃,填补了我国高温还原焰辊道窑的空白,为我国还原焰窑炉发展提供了实际的发展方向。目前已成功运行了2年,所烧产品质量好,能耗低,受到了该厂较大的**。
    2窑炉技术介绍
    2.1主要技术参数
    2.1.1 窑长:48m
    a:低温加热带:12m
    b:高温加热带:18m
    c: 冷却带:18m
    2.1.2窑炉内宽:1580mm
    产品装载宽度:1350mm
    产品装载高度:420mm
    2.1.3 设计使用温度:1420℃
    2.1.4 窑炉截面温差:<5℃
    2.1.5产量:80m3/天
    2.1.6能耗:2200kg液化气/天
    2.1.7燃料种类;
    2.1.8燃料热值:45980KJ/kg瓷(11000Kcal/kg)
    2.1.9喷咀数量:58支
    2.1.10传动方式:斜齿轮分节调频调速传动
    2.l.ll辊棒:
    低温加热带、冷却带:高铝辊棒
    高温加热带:重结晶SiC辊棒
    辊棒规格:60×2950mm 辊棒中心距:80mm
    2.1.12烧成周期:8小时
    2.1.13烧成合格率:≥90%
    2.1.14烧成气氛:氧化、还原两用
    2.l.15装机容量:约80KW(运行时46KW)
    2.1.16控制方式:自动控制结合手动微调
    2.2窑炉结构设置及特点
    2.2.1三带比例及结构特点
    低温加热带和高温加热带占窑长的62.5%,冷却带占总窑长的37.5%,能满足烧成制度、易调节。
    低温加热带内衬采用隔热轻质高铝砖。窑头设置封闭气幕,使窑头形成一种涡流循环状态,有效防止窑外冷空气的进入。同时为减少预热带气体分层形成窑内温差,沿墙两侧交错布置搅拌气幕,在窑内形成强烈湍流,扰动烟气,从而达到减少低温加热带温差的目的。
    高温加热带内衬采用氧花铝空心球砖和1500系列轻质莫来石砖,能保证烧成温度在1420℃,外表采用低蓄热、低导热系数的新型轻质保温材料,有效控制炉体对外散热,降低能耗,在夏天较高温度时,窑炉外壁温度仅为85℃(主要是重结晶SiC辊棒散热所致)。窑体两侧共设58只高速烧嘴,上部26只,下部32支,呈上、下、左、右品字型交错布设。氧化与还原气氛转换采用*特的热风气幕进行分隔,使气氛转换分明。各级窑室之间采用挡火墙结构加以分隔,分为15个相对的独立的控制单元,各单元分别通过热电偶-一温控调节器一助燃风执行器——液化气比例阀一一烧嘴自动控制该段烧成温度。烧嘴布于辊棒下和窑道上侧,有效避免了火焰对产品的直接冲刷。烧嘴向低温加热带延长布置,有利于预热带温度的调节,减少低温加热带上下温差,有效缩短烧成时间。
    冷却带采用直接冷却和间接冷却相结合的冷却方式。冷却分为急冷区,缓冷区、出窑前冷却区,以直接冷却为主,间接冷却为辅。急冷喷风口设于辊棒下和窑道上层之间,避免了冷风直接冲击产品而造成的炸瓷现象,间接冷却则采用抽余热的方式解决,窑尾设置冷风系统对出窑前产品进行最后冷却,使出窑产品温度接近于室温,既改善了操作环境,又起到了平衡窑内冷却风量的作用,保持了窑内冷却带压力的稳定。
    2.2.2传动系统
    包括进出窑装置、窑体传动、转弯机。窑体传动采用45°斜齿轮分节传动,包括调速装置、斜齿轮、辊棒等装置,共分为6段,通过6台统一控制的变频调速电机带动斜齿轮、驱动辊棒转动,窑外设置自动回车线,与窑炉整体通过PLC实现连锁控制。回车线采用双链条传动,设置可自转90°的转弯机装置,能与窑炉一起实行全循环。
    2.2.3供气、供风系统
    供气管路采用无缝钢管,阀门采用密封性好,耐腐蚀对夹式蝶阀,喷嘴采用小流量节能型喷嘴,窑用助燃风采用换热器预热,在喷嘴布置上,充分考虑利用旋转气流的离心作用和附壁作用,上下对称错位布置,使火焰贴附于窑炉内壁,对流传热加强,提高产品充分受热性,保证窑内温度均匀。在主管上我们设有常开式电磁阀,遇到停电或者出现其他故障时能自动切断燃气供应,在放散管上设置的常闭式电磁阀也立即自动打开,将管内多余的液化空,同时还设有过滤、压力上下限报警等装置。
    全窑风机管路系统均按热工要求选型,共设置两台排烟风机,两台余热风机、两台助燃风机、一台急冷风机、一台冷却风机。其中,助燃、急冷风机设置空气过滤装置,以利于明焰烧成。
    2.2.4控制系统
    全密控制系统采用自动化控制,仪表为PID功能仪表,采用PLC进行连锁和管理。该控制系统包括温度自动控制、压力自动控制、风机传动部分控制、设备联锁等几个方面。
    A温度自动控制
    该系统采用GT31(德国进口)型执行器、GERFRAN型温控仪(意大利进口)来控制烧成温度,原理为:热电偶探测温度一温度调节器(设定温度)一助燃风执行器一助燃风调节阀-液化气比例调节阀一烧嘴,窑内预热带或者冷却带温度采用温度巡检仪进行显示,排烟、余热温度采用双金属温度计现场显示。
    B压力控制
    该系统在排烟风机、余热风机、助燃风机上设置变频器(日本),有利于压力控制的稳定性,该窑压力显示点有排烟机压力、余热风机压力、助燃风机压力、液化气压力、窑压等,全部在控制柜上显示。
    C气氛控制
    该窑在气氛控制上关键在于通过稳定窑内压力来稳定窑内气氛,在稳定压力时,先让排烟风机抽力在保窑内废气抽出的前提下,尽量减小排烟风机抽力,让其压力稳定,从而使气氛不受到压力波动干扰。在气氛保持过程中,通过变频器来稳定排烟风机抽力,急冷风机抽力以及气氛转换气幕压力来保证气氛稳定,通过比例阀控制CO含量在4-8%左右。在自动控制的同时辅助手动微调,能保不出现烟熏及泛黄现象。
    D风机及传动系统
    该窑采用连锁控制,利用变频器控制排烟风机的抽力,稳定零压点位置,从而控制窑内压力。助燃风机及急冷风机可通过控制柜上助燃风压和急冷风压变送器来直观的设定压力,然后通过变频器进行自动控制其风压,能保持窑内压力稳定。主传动在正常生产前先采用手动调节传动速度,保窑内所有辊棒采用同一速度运行.然后再通过变频器稳定其运转周期,在控制柜上设有周期给定器,可以方便的控制烧成周期。所有风机控制柜上通过控制按钮开启。
    E工作状况监护及报警系统
    为了能在控制室监视窑头、窑尾产品装载运行情况,分别在窑头、窑尾设置摄像镜头,并传送到控制室显示器上,当出现异常情况时,能提醒操作工及时处理。报警系统包括各种设备开启故障报警、温度上、下限设定报警,变频故障报警等。并可以实行燃料自动切断与放散,符合环保与消防要求。
    F设备连锁
    PLC输入与输出,变频器异常,风机故障。电机过载均能采用声光报警,并采取相应的连锁处理。
    2、3该窑技术经济指标
    2.3.1所烧产品质量
    该窑所烧产品经抽检外观质量较原产品相比,变形小,釉面光润,产品白度高,无阴黄、落脏等缺陷。
    2.3.2经济技术指标
    广东潮州宏华工艺陶瓷有限公司在建该窑前,该厂原采用6座4m3手动抽屉窑进行烧成产品,所烧出来的产品由于受装窑及烧容师傅的感觉等外在因素干扰,所烧出来的产品不稳定,有变形及色差现象。特别指出的是,抽屉窑由于是间隙式窑炉,加之其本身固有的温差大等因素,能耗较高,经该厂测算,每条4m3抽屉窑每天可以烧1窑,其产品容量为4m3,其耗气量达到了400kg,相当于每m3产品需要100kg液化气,而采用我公司研制的48m高温还原焰辊道窑之后,每天产量为80m3,而其耗气量仅为2200kg,而同比抽屉窑则需要8000kg液化气,每天节约5800kg液化气,按26元/kg考虑其价值,相当于每天节约15000元燃料费用,扣除电力损耗因素,半年即可收回成本。所以该厂该窑建设成功后,立即停掉了所有抽屉窑,产品档次也上了一个新台阶。
    该窑由于窑外全部采用自动回车线,加上窑炉外部采用钢板装修,采用喷塑工艺,所以外观美丽大方,布局合理,能较大的提高企业形象,产生很好的社会效益。
    该窑在环保上经潮州市**检测,完全达到了环保要求。
    3结论
    3.1本项目辊道窑以作燃料,单位产品能耗低于日本、意大利辊道窑能耗,达到国际九十年代先进水平;烧成热效率46.64%,国内同类窑炉先进水平。该窑烧成温度己达1410℃以,上下温差不**5℃,了国内高温辊道窑空白。在日用瓷高温还原焰快烧方面,起到示范及推广作用。
    3.2研制了与高温辊道窑烧成相配套的日用瓷及工艺瓷配方和工艺,产品釉面及规整度等外观质量大有提高,内在质量均达到或**过国家标准。

 

减摇鳍 PLC 随动系统

    减摇鳍是较为行之有效的一种主动式船舶减摇装置,它的减摇效率高,经过60多年的发展,已广泛应用于各种船舶中。它的减摇原理是:船舶在水中行驶过程中,当鳍在水中有一个速度和倾斜角的时候,就会产生一个升力,利用此升力产生的力矩来抵抗海浪的干扰力矩,便可达到减小船舶横摇的目的。随着科学技术的发展,减摇鳍系统正在逐步完善,减摇效果也在不断提高。

    近年来,在工业生产的自动化控制领域中,正普遍利用一种新型控制设备——可编程控制器PLC 。目前的PLC正在向着精度更高、功能更多、使用更方便的方向发展。从PLC的发展趋势来看,PLC控制技术将成为今后工业自动化的主要手段。将其引入减摇鳍控制系统中,实现数字化控制,将进一步提高控制系统的灵活性和可靠性。

1 减摇鳍随动系统的构成及工作原理

    减摇鳍的随动系统连接来自控制系统的控制信号,是转鳍机构的中间转换和功率放大环节。改造前,每个随动系统由±15V稳压电源板DYCJ、综合放大板SKCJ、操纵转换板SCCJ、液压控制系统以用转鳍机构、反馈、限位元件等组成。随动系统应尽可能“快速、准确、稳定”地工作。目前,大多数减摇鳍的随动系统都是“电-液随动系统”。本系统以NJ4型减摇鳍的阀控式电液随动系统为原型,对其做了适当的改进,下面进行详细介绍。

    首先将来自控制器的信号送到综合放大电路板SKCJ(该插件板能对控制信号进行隔离),与升力反馈信号进行代数求和、校正、放大,然后再与鳍角反馈信号进行二次代数求和、校正、放大,接着送到鳍机械组合体上的射流管电液伺服阀,进行电-液信号转换。电液伺服阀根据SKCJ板输出信号的大小和极性调节来自油源机组的液压油的流量和流向,使液压缸的活塞速度和运动方向发生变化,带动鳍机械组合体上的摇臂转动,使鳍转动到一定的角度产生相应的对抗力矩。

    改造后,以上各功能完全由PLC实现,原有随动系统中的各电源、插件板也将由PLC各模块取代。

2 随动系统的改造

2.1 减摇鳍随动系统的改造设计

    PLC随动系统接收来自控制器的控制信号,经过处理后传递给伺服系统,驱动减摇鳍移动到*位置,同时将输出信号反馈回PLC,构成控制回路。系统改造后的原理如图2所示。

    2.2 系统中PLC的选择

    由于船舶航行在环境瞬息万变的海面上,工作环境非常恶劣,比如机舱内的温度能够达到55℃,湿度更可以达到95%,并且存在各种强烈的冲击、振动和盐雾,这就要求安装在舰船上的减摇鳍系统有较强的抗干扰能力。而船舶上空间狭小,对所安装设备的体积也有一定的要求。由于减摇鳍随动系统工作环境的特殊性,对系统中的PLC有较高的要求。考虑到性能指标、功能、体积和价格等因素,本文选择了松下电工的FP0系列可编程控制器。

    系统主要包括电源单元、控制单元和两个模拟量输入输出单元。PLC工作环境温度在0~55℃范围内,工作环境相对湿度为30%~85%,模拟输入与PLC内部电路之间采用光电耦合器进行隔离,同时输入输出端设置滤波器,使之符合减摇鳍系统工作环境的要求。

2.3 PLC软件实现的功能

    根据系统要求,程序需要实现以下功能:

(1)对来自系统油源机组的信号进行检测,如发现油温、油位等出现故障,系统停机并自动报警。

(2)对来自控制器的输入信号进行检测,保证其始终被限定在规定范围内,以保减摇鳍工作转角不**过其极限值;并对控制信号按一定控制规律进行处理。

(3)在鳍转动工作时,将从鳍角电位计接收到的反馈信号与输入的控制信号进行比较,构成回路,实现负反馈。将控制信号与反馈信号综合处理得到的结果作为控制指令发送给输出端口。

(4)PLC输出给电液伺服阀的信号是否**过额定范围,如**出则做相应处理,保证伺服阀和减摇鳍正常安全地工作。

(5)在工作前或停机时根据操作需要随时将减摇鳍运行到零位或其它需要的位置。

2.4 系统改造中存在的问题及解决方法

    系统正常工作时,油温应低于60℃,油位应大于300mm,若**出上述指标,设在油箱内部的传感器开关将闭合,输出电压信号。为实现对油温和油位的检测,需要将代表油温和油压的两路信号输入给PLC进行检查这样将占用PLC模拟量输入/输出单元的两个输入端口,增加单元块的数量。考虑到油温和油压变化较缓慢 没有必要时刻监视其变化,因此用软件设置定时器,控制两个继电器交替开关,使油温和油压信号只通过一路通道交替输入PLC,在PLC内部进行检测达到降的目的。

    不同鳍工作时的饱和角度不同,设计中将鳍的正常工作角度设定在±25°以内。根据真实鳍角与反馈电压的比例关系,可以确定鳍角在±25°时对应的反馈电压是±2.2V,将这两个电压值作为PLC对输入电压信号进行检测的参考值。在PLC程序中分别用十进制数值±K440表示两个参考电压。PLC控制信号在输出给电液伺服阀前也要进行检测,这一步检测的标准不是减摇鳍的工作额定电压,而是电液伺服阀的额定电流,目的是保证伺服阀可以正常安全工作。伺服阀工作的额定电流为±8mA,线圈电阻为1000±100Ω。由于FP0系列PLC输出电流范围在0~20mA之间,无法为伺服阀提供负电流,但PLC的电压输出范围在±10V之间,因此将电压值作为指令信号输入伺服阀。伺服阀串联后线圈电阻为2000Ω,由此得到伺服阀工作的电压可以达到±16V。系统设计中,为使伺服阀始终工作在线区,将PLC对伺服阀的输入电压限定在±8V以内在PLC程序中分别用±K1600表示两个参考电压如指令信号在±8V之内,则正常输出,如果**过±8V的范围,则按照±8V输出。

    由于松下FP0系列PLC的PID命令不支持负数运算,所以随动系统控制部分采用自行设计的PD控制命令。每次程序启动前PLC都先自动对各主要寄存器清零,以程序启动时系统产生不必要的动作。另外由于松下FP0型号不提供小数运算,因此对无法整除的数据只能采用四舍五入的处理方法,比例系数只能设定成整数。为了克服这一缺点,程序先将存储于DT20中的指令信号与鳍角反馈信号的差值乘以一个十进制的系数(如K47),将得到的数值存储在DT30中,再将DT30中的数据除以一个十进制系数(如K10),这样较终得到的数据与DT20中的数值直接乘以4.7后的结果几乎完全相同,有时两者之间会存在一个很小的偏差,可以忽略不计。这样就解决了比例系数只能是整数的不足,更准确地实现了比例控制。

2.5 随动系统性能分析

    系统软件设计完毕后,按要求安装,对各端口进行测试,确保可以正常工作后将系统启动。给设计完成的随动系统输入一个幅值为1V的阶跃信号。

    系统的较大**调量在2%以内,上升时间小于0.6s,过渡时间小于0.8s,暂态过程中的振荡次数为3。上述各项指标完全符合减摇鳍随动系统的工作要求。

    除了良好的暂态品质以外,还要求足够的稳态控制精度5。稳态控制精度反映了对系统的稳态特性或控制的稳态精度的要求。对于恒值控制系统,在工作中如果给定值不变,要求输出量也不变,因此注意的是扰动量所引起的稳态误差;而对于随动系统,给定量以任意规律变化,则要求输出量以一定的精度跟随给定量变化,因此注意的是被控量和给定量之间的误差。在检测随动系统性能的实验中,输入的阶跃信号幅值为1V,系统的稳态输出为0.986V,稳态误差小于2%。上述各种指标均符合减摇鳍系统对随动系统的要求。

    根据鳍角与鳍角反馈电压的比例关系图,将输入幅值在±0.9V之间变化的正弦信号作为指令信号,使减摇鳍在指令信号的控制下,在±10°之间来回摆动。保持指令信号的幅值不变,改变信号的频率,得到被控系统相应的幅值和相角。根据实验数据可以得到随动系统的幅频特性和相频特性。需要注意的是,系统频率特图中的横坐标不是通常使用的对数分度lgω,而是直接使用ω。

    观察随动系统的幅频特图可以看出,系统在频率小于0.35Hz之前表现出了类似放大环节的特性,且此时系统的输出几乎没有任何明显变化,与角频率变化无关,非常准确地实现了指令信号的输出,系统非常稳定。从0.35Hz开始,随着频率的增大,系统的幅频特性和相频特性均发生了改变。从整个变化过程来看,系统表现出类似惯性环节的特性,因此可以将ω=0.35Hz近似地认为是系统的转折频率或交接频率。

    与幅频特性相同,随动系统的相频特图也显示出系统在ω=0.35Hz之前的相角滞后非常小,在5°以内,可以忽略不计。在0.35Hz之后相角发生了明显的变化,整个变化趋势也类似于一个惯性环节。但与典型的惯性环节不同,在所认为的转折频率ω=0.35Hz处,系统的相角没有滞后45°左右,系统也没有象典型惯性环节一样相移-arctgTω,与角频率ω表现出严格的反正切关系。

    从整个系统表现出的幅频特性和相频特性来看,改造后的随动系统可以近似地认为是由一个放大环节与惯性环节串联组成,系统在频率小于0.35Hz的低频段表现出了较好的性能,符合减摇鳍系统对随动系统的要求,可以很好地工作。

    由于PLC在软件和硬件上具有**的优点,随动系统的稳定性和精度都有所提高,系统的安装和修改也更为简单方便。经过运行测试,改造后的随动系统符合设计要求,能够稳定运行,确保了船舶减摇鳍系统的正常工作。随动系统的改造完成后,将利用可编程控制器继续完成减摇鳍控制器的设计,从而形成一套完整的应用可编程控制器实现的船舶减摇控制系统。



http://zhangqueena.b2b168.com

产品推荐