• 6ES7221-1BH22-0XA8接线方式
  • 6ES7221-1BH22-0XA8接线方式
  • 6ES7221-1BH22-0XA8接线方式

产品描述

产品规格模块式包装说明全新品牌西门值+ 包装说明 全新 - 产品规格子

6ES7221-1BH22-0XA8接线方式

   中国造纸工业有效生产能力自1990年以来,特别是自1995年以来一直在持续增长。到2002年底为止,我国有4000多个造纸厂,其中规模以上的有2600多家。2002年的总产量达到了3780万吨。在今后的l-2年中,还将会有近1000万吨的新增生产能力。目前我国造纸厂家众多,可是普遍存在着自动化控制水平较低、能耗高、纸品的质量和产量一定程度上受限制等状况。而随着社会经济的高速发展,人们对纸张的消费数量和纸张的质量要求也越来越高,这就要求造纸企业不断提高生产工艺和自动化生产水平,使纸产品能够满足日益发展的经济需求。


造纸机变频改造的必要性
    我国造纸机分部传动设备,以前采用SCR直流调速方式,由于存在滑环和炭刷造成可靠性和精度不高,从而导致纸机的机械落后,较高车速也只有200m/min左右,很难同国外的1000m/min的高速纸机相比。造纸是一个连续生产的过程,因此生产线的连续和有序控制成为了制约成品纸质量和产量的瓶颈。直流调速系统在纸机的发展史上占有重要的地位,但由于直流电机存在维护难、抗环境能力差,主要表现如下:
(1)整流子磨损严重, 烧毁整流子的故障, 导致停机时间长;
(2)直流电机维修困难多, 要求高, 修理费用也高;
(3)测速发电机易磨损,造成传动系统精度低;
(4)直流调速控制系统复杂, 调试困难, 一般技工很难调出好的机器


造纸机变频控制系统简介
     造纸机结构上大致有流浆箱,网部,压榨部,干燥部,压光,收卷几部分组成。传动系统是由多分部传动点组成的速度链式协调系统。使用变频控制系统可以使传动系统具备非常方便及精确的调速功能:
(1)各分部传动点之间能保持固定的传动比,使各传动点上线速度保持一致。便于设备提速、减速,避免各传动点之间因线速度相差太大而断纸。
(2)连续平稳地拖动纸机运行。
(3)具有平滑加减速功能。

目前在纸机分部传动上使用的变频器必须能同时具备以下特点
(1)调速范围宽,在全速度范围内,效率必须在以上;
(2)功率因数**0.9以上;
(3)输入谐波电流总失真小于3%;
(4)采用可靠性高、技术成熟的标准器件IGBT;
(5)能减少输出谐波分量并有效降低dv/dt噪音和转矩脉动的效果

    实例分析如:大连XX纸厂的五层纸生产线,采用安邦信G9变频器改造五层纸生产线主要有坑机、复合机、热板、纵切机、横切机组成。坑机用来将原纸制造出波浪,根据波浪的疏密程度可分为A、B、C、E四种。波浪是由电动机带动浪辊在固定的有槽的钢板上将纸挤压形成的。坑机电动机的功率一般在22KW和30KW。复合机用于将生产出来的浪纸和芯纸再加两层面纸复合在一起,这样就生成了五层纸板。在通过热板干燥,纵切机切边和压痕,然后由横切机进行剪裁。本次改造主要是4台坑机和热板的变频改造,以获得优良的调果和节能效果。如下图所示:


方案: 
坑机和热板采用安邦信G9系列变频器,其电气图如下所示:


功能介绍:
 统调功能:采用主-从式结构,其速度可以通过统调电位器给定。将一台G9变频器作为主驱动输出,从驱动均采用G9系列产品,多台从驱动可以共用一台主驱动。
 微调功能:主驱动的运行频率通过统调电位器模拟口输出,作为从驱动变频器的初始同步转速,其偏差可以通过从驱动的微调电位器来修正。
 由于变频器具有较前强的过载能力和低频额定转矩,保了速度不随负载的变化而变化。同时,克服低速时速度不稳定的缺陷。


系统优点
1、本系统采用先进的变频控制技术,使电机软启动,减轻机械冲击和降低部分噪音,延长机械设备的使用寿命,减少机械维修费用。
2、运行、操作、维护简便,提高产品的质量和产量。
3、节约大量的能源。

节电效果分析
    大连XX纸厂是大型造纸厂家,其中我公司改造的1760白板纸机有5个传动点,都是用电磁调速,各个传动速度断断续续很不稳定,生产中经常断纸,采用我公司设计的变频同步控制系统改造后取得很好的节能效果。
 改造前生产1吨纸用242.5度。,
 变频改造后生产1吨纸用127度电(6个月平均数)。
 每吨节约为242.5-157=85.5度。
 节电率达到:(85.5÷242.5)×**=35.2%。
    也就是说,该造纸机进行改造后,每月可为该厂节约42750度电,按每度电0.7元计算,每月就可节约29925元。每年就可节约35.9万元。且操作从45米/分一直调到75米/分仍相当稳定,同步效果极好,提高了纸的产量,增加了企业的效益。  

1. 引言 


    对于大部分生活供水系统来说,日常供水随着各个时段和各个季节的变化而有很大的起伏,一般在晚上黄金时段的用水需求量比较大,深夜由于客户需求量大幅度减少,管网压力急剧升高。对于传统的水塔等方式供水,其维护困难。尤其是面对消费供水等突发事件时,其反应速度较慢,早已不能满足恒压供水的需求。使用变频器对供水系统进行闭环控制,达到管网压力基本稳定,同时,通过变频器内部的智能控制功能,轮循供水电机运作,达到设备的合理利用以及维护方便功能,同时当管网压力不正常,或者其他故障产生时,通过变频器的远程报警功能及时通知维护人员,避免故障进一步扩大。 

2. 系统基本组成 

(1) 系统主控环节 

    系统整体的控制信号,包括压力设定信号,工频和变频故障信号处理,水位故障检测处理均由主控 PLC 或主控人机设定, 对于整个系统的运行信号进行综合,尤其是当出现故障状态的系统处理操作,是整个系统的核心控制部分。 

(2) 变频器内部控制环节 

    变频器内部控制,主要是指变频器内部 PID 功能模块,内部 PID 功能使现场工程师设置和调试方便,相对于原来的硬件 PID 板控制,省去了硬件维护需要,节省了成本。主控环节的压力设定信号与系统压力信号反馈形成闭环以维持管网恒定压力。 PID 的特性可由参数选择。 

(3) 供水附件 

    供水附件为变频器控制外部电机的中间控制机构,四方变频器供水附件为一个独立的控制系统,只需要一根外接的电话线,就可与主控板连接,方便的远程控制,利用 485 通讯底层接口,*外接电源,就可控制多达 5 个以上的继电器,从而用来控制外接接触器。接口简单,使用方便。 

(4) 电机控制环节 

    当管网压力的变化要求增加或减少工作水泵时,通过供水附件基板的中间继电器,控制各个电机交流接触器。基板输出端口的状态决定外部各个水泵的运行状态。 

(5) 执行环节 执行环节为各水泵。 



(6) 信号反馈环节 

    管网压力的信号反馈,用于与设定环节形成 PID 控制闭环,对于大部分供水系统,由于压力控制为一个大惯性环节,且其要求不太高,所以不必要使用微分环节。 

下面对山东省济南市某小区恒压供水系统,使用四方 C320 系列变频器系统改造进行分析,其框图如下 : 

3 .工作过程描述 

    当变频器被投入自动运行时, 1# 泵电机接触器首先被控制导通,变频器输出频率上升,同时管网压力信号逐渐增加,出水管网的压力信号与 PLC 管网压力设定信号负反馈闭环,当电机频率上升到较高频率,而管网压力达不到设定要求时,变频器立即控制工频接通 1# 泵,使 1# 泵全速投入运行,同时变频器经过时间延迟,对 2# 泵进行变频控制。当管网压力与设定压力基本平衡时,变频器控制当前变频电机维持在一定的频率,压力的稳定和超调量可以通过 PI 参数的调整。当水需求量减少,管网压力逐渐升高,内部 PI 控制器输出频率降低,当变频器输出频率低至 0HZ ,而管网在一设定时间内还**设定压力,变频器切断当前变频控制泵,转而控制下一个原工频控制泵,变频器在水泵控制转换过程中,逐渐轮换使用水泵,使每个水泵的利用率均等,增加系统可靠性。 

4 .四方通用变频器的使用 

    对于当前的恒压供水系统,配置了四方供水附件,其他需要设置的参数功能组包括: 1. 基本运行参数; 2. 模拟输入输出参数; 3.PID 控制参数组。供水系统与变频器相关接线如下图: 



    •  基本运行参数主要参数设定: 

    F0.0=0 选择 V/F 控制方式 

    F0.15=1 选择泵类负载 

    F0.4=0001 PLC 输出端子控制起停 

    •  PID 控制主要参数设定: 

    F8.0=0121 选择比例积分,单极性 PI 功能有效。 

    F8.1=0204 选择设定信号输入 VC2 ,反馈信号 CC , 

    F8.3=0 , F8.4=10 选择较小给定量 0V ,较大给定量 10V 。 

    F8.5=2 , F8.6=10 选择反馈对应量。 

    F8.7=2 , F8.8=10 设定 PI 控制器参数。 

    •  拟输入输出参数组: 

    F2.2=0 , F2.3=10 设定通道 VC2 信号特性, 范围 0~10V 。 

    F2.4=4 , F2.5=20 设定反馈通道 CC 信号特性,范围 4 - 20mA 。 

5 .改造中注意事项 

    •  正确设置设定和反馈对应曲线。 

    •  变频泵至工频控制时可直接切换,以免管网压力形成波动,工频泵至变频控制的切时间必须适当设置,延时太短,水泵对变频器形成冲击电压和冲击电流,容易使变频器出现故障,延时过长使管网压力不稳定,从而易出现频繁切换动作。 

    •  当供水基板与主控制基板距离较远时( 20m 以上),需提供附加电源以确保信号正确传输。 

    •  当供水系统不需要处理消防等紧急状态下的供水问题时,可简化 PLC 控制功能。甚至只通过单变频器实现简易恒压供水。 

    •  适当使用四方变频器*特的负载检测和切断自停机功能,方便远程水泵的控制


202207281244519172844.jpg202202231632200382714.jpg

塑料通过挤出机塑化成均匀的熔体,在塑化中建立的压力作用下,并使螺杆连续地定温、定量、定压地挤出机头。大部份热塑性塑料均采用此方法。螺杆挤出机有多种不同的型号和规格,较常用的挤出机就是螺杆挤出机 。采用四方 C320 系列变频器的挤出机主机传动,能够完全满足挤出机的工艺要求,达到必要的工艺控制指标,经过各地多年的实际运行来看,运行稳定,产品的适应性强,经济效益明显。


挤出机传动的特点 

一、挤出成型设备的组成部分 

    一台挤出设备通常由主机(挤出机)、辅机及其控制系统组成。通常这些组成部分统称为挤出机组。 

1. 主机 

    一台挤出机主机由挤压、传动、加热冷却三部分系统组成。挤压系统主要由螺杆和机桶组成,是挤出机的关键部分;传动系统中起作用是驱动螺杆,要保证螺杆在工作过程中具备所需要的扭矩和转速;加热冷却系统主要来保证物料和挤压系统在成型加工中的温度控制。 

2. 辅机 

    挤出设备辅机的组成根据制品的种类而定。一般说来,辅机由剂透定型装置、冷却装置、牵引装置 、切割装置以及制品的卷取或堆放装置等部分组成。 

3. 控制系统 

    挤出机的控制系统主要由电器、仪表和执行机构组成,其主要作用为: 

    (1)控制主、辅机的拖动电机,满足工艺要求所需的转速和功率,并保主、辅机能协调地运行。 
    (2)控制主、辅机的温度、压力、流量和制品的质量。 
    (3)实现整个机组的自动控制。 

二、 传统螺杆挤出机的控制 

    1 )在传统的螺杆挤出机系统中,螺杆由直流电机驱动。在直接传动情况下螺杆直接由齿轮箱驱动;在间接传动情况下,螺杆由皮带和牵引盘驱动。传统的直流电机本身存在着一定的缺点:例如直流电机的电刷每个月就要更换一次,在多粉尘或腐蚀性环境中直流电机需要经常清洗,有时甚至还需要从车间外为直流电机通入洁净的冷却空气。 

    2 )间接传动螺杆挤出机的缺点在于:存在于皮带滑差,皮带会造成一定的能量损失,更多的机械装置增加了磨损和发生故障的可能性。而直流电机较大的弊端噪音过大,电刷打火,转子污染,电机温度过高,排气不充分和电机震动。因此使用直流电机的螺杆挤出机维护费用更高,直流电动机的较初成本也更高一些。 

三、 C320 系列在挤出机的应用 
 
    四方 C320 系列变频器用于挤出设备,有高质量的运行特性,这是因矢量控制型变频器本身可提供的良好的产品性能决定的。 

    1〉高性能双CPU提供更高频率响应

    C320 系列变频器内置的双 CPU,具有高控制精度、快速响应频率的性能。 挤出机的工艺要求主要是控制出口的压力恒定,设备在刚开始工作时,进行转速控制,在达到需求压力时,要切换为压力控制。切换过程应该无冲击,需要变频器高的控制精度,来接应压力信号。 

    2〉矢量控制提供低频时高转矩输出 

    挤出机的主驱动电机主要通过平行轴斜齿轮减速器减速后带动螺杆转动,在基频以下改变运行速度时为恒转矩调速。 

    以往使用 V/F控制型变频器,由于要考虑负载的启动转矩,要设定相应的转矩提升准位,如果转矩提升设置过高,在低频轻载时会励磁太大,容易引起电机严重发热,影响到设备的稳定运行。 

    采用无速度传感器矢量型变频器 C320系列,使用自学习功能可观测电机参数,不但能保证电机在低频时良好的输出特性,变频器本身的自动节能运行功能会随转矩的改变而减少输出的电流,不但能节省电能,更能上述工作隐患发生的可能性。 

    3〉转矩限定和转差补偿,转速控制精度高达0.1%



http://zhangqueena.b2b168.com

产品推荐