• 西门子模块6ES7216-2AD23-0XB8技术参数
  • 西门子模块6ES7216-2AD23-0XB8技术参数
  • 西门子模块6ES7216-2AD23-0XB8技术参数

产品描述

产品规格模块式包装说明全新品牌西门值+ 包装说明 全新 - 产品规格子

西门子模块6ES7216-2AD23-0XB8技术参数

1.3控制软件功能

    SIMOVERTVC变频器的矢量控制方式可以精确地测定和控制电机电流的力矩分量和励磁分量,其控制性能可与直流传动相媲美,具有调节参数自动优化,自动故障显示与报警,可以灵活设定和更改过程数据通道等特点。

    2、传动系统的设计与配置

    2.1主回路配置

    全数字交流变频调速系统主回路由进线电抗器,可逆整流器,自耦变压器,逆变器,输出电抗器和三相异步交流电动机组成。进线电抗器既可避免电网谐波对调速系统的影响,也可减少整流装置产生的高次谐波对电网的影响。系统共用1套可逆整流装置及公共直流母线,取消了能耗制动单元。在正常工作时开卷机的逆变器处于整流工作状态,即能量由电动机回馈到直流母线上,而其他逆变器则均处于逆变工作状态,将直流母线上的电能输送到对应的电机中。这样通过直流母线实现了逆变器之间以及逆变器和整流器之间的能量交换;将处于整流状态的逆变器发出的电能通过直流母线输送到其他处于逆变状态的逆变器中,若逆变器逆变所需的总能量大于逆变器整流发出来的总能量时,可通过整流器从电网补充电能;反之,利用可逆整流器将电能回馈给电网。这样将原本需通过能耗制动器消耗的电能用于驱动其他电机或回馈到电网,大幅度地节省了电能。自耦变压器将可逆整流器逆变产生的电流经过电压提升,回馈给电网。逆变器为交流变频调速系统的核心装置,在本次设计中全部选用矢量控制型逆变器。每套逆变器装置均用脉冲编码器测量电机转速,构成闭环速度控制系统。每台逆变器与电机之间均配有输出电抗器,以防止逆变器输出电压的dV/dt太大对交流电机产生不良影响。

    2.2控制回路配置

    2.2.1PROFIBUS-DP网通信

    在本次设计中,传动装置的上位控制器选用西门子S7-400系列PLC。PLC主要通过PROFIBUS-DP网实现对传动装置的控制和监测。传动系统的可逆整流器和逆变器均配有CB1通信板。在PROFIBUS-DP网上,整流器和逆变器作为从站通过CB1板实现与主站PLC之间快速、准确的数据传递。PLC与装置之间通信的数据结构为PPO(参数过程数据体)形式。PPO分5种类型,以PP01-PP05表示。我们根据实际情况选用PP04,即PLC依次可以向每台装置发送6个过程数据字,再从装置接受6个过程数据字。通过过程数据字,PLC将各装置的起、停命令等逻辑控制量和速度给定、力矩给定及开卷机的张力给定、初始卷径设定等数字控制量作为过程数据传给调速装置,而整流器和逆变器通过CB1板将直流母线的电压、电流等,电机的实际转速、力矩、输出电压、电流以及调速装置的状态字等过程数据传送到PLC。

    2.2.2工艺板

    为了实现带钢和纸卷的恒张力卷绕控制,在开卷机(开卷控制)、卷纸机(卷取控制)逆变器的插槽中配置工艺板T300及MS320卷绕控制模块。MS320是含有多种恒张力控制程序的软件包,我们采用其中的间接闭环张力控制程序。该程序的特点是机械设备不需额外增加张力检测装置,只需通过测量卷径,闭环控制电机的输出力矩,实现恒张力控制。但在速度发生变化时,

度范围0.3-3.0mm,宽度范围650-1320mm,较大卷重25t,成品长度1000-4000mm,精度0.3mm/1000mm,机组较高剪切速度60m/min。横切线采用了静电垫纸、真空垛板和圆盘剪无活套带张力切边等先进技术。该设备1997年开始设计,1998年9月底安装完毕并进行冷负荷试车,同年12月初开始热负荷试车和试生产,于1999年6月通过考核验收,进入正常生产阶段。产品产量超过合同指标,质量达到日本JIS标准。

    不锈钢横切线主要由开卷机、卷纸机、张力辊、圆盘剪、卷边机、矫直机、挤干辊、飞剪和真空垛板机等单机设备组成。其中矫直机、飞剪和真空垛板机从国外引进。所有调速电机均采用交流变频电机,变频传动电机总功率506kW。调速装置除飞剪为美国UNICO公司的产品外,其他均采用西门子公司SIMOVERTMASTERDRIVES6SE70系列全数字矢量型交流变频调速装置。本文着重介绍SIMOVERTMASTERDRIVES6SE70(SIMOVERTVC)全数字矢量型交流变频调速装置在横切机组中的应用。

    1、SIMOVERTVC功能及特点

    1.1技术指标和硬件特点

    SIMOVERTMASTERDRIVES6SE70根据控制方式的不同,共分3种系列:V/F频率控制型、矢量控制型和伺服控制型。主回路部分为交直交电压型,功率单元采用IGBT组件,较大输出功率达1500kW。该系列变频器具有功率因数高、输出纹波小、性能可靠、系统稳定性好等特点。调速装置主板上配有较丰富的数字、模拟量输入/输出接口及两路串行数据通信口。除主板外,控制器中还留有两个插槽供附加工艺板或通信板使用。西门子6SE70还可以将变频器的整流、逆变两部分以独立装置形式提供,即整流器和逆变器。这样可以选用1套大容量整流器通过直流母线给多套逆变器供电。

    1.2通信能力

    SIMOVERTVC具有较强的通信能力。它拥有3种途径与外部通信。

    主板上有两个串行通信口,用于与手操器、计算机(带SIMOVIS软件)或上位机通信。使用USS协议,通信总线较高可带31个从站,通信速率较高可达38.4Kb/s。

    通过配备附加板SCB1、SCB2可以进行传动装置之间点对点联接通信或与上位机之间通信。使用USS协议,通信总线较高可带31个从站,通信速率较高可达38.4Kb/s。

    对于高水平自动化系统,通过配备附加通信板CB1使传动装置通过PROFIBUS-DP网与上位机通信。PROFIBUS-DP网是一种功能很强的工业现场局域网,符合ENSO170标准。通常用双芯带屏蔽电缆,也可以用光纤通信。如用双芯带屏蔽电缆,在200m距离内通信速率可达1.5Mb/s,较多可带127个从站

202207281244519172844.jpg202202231632200382714.jpg


 一、抽油机使用变频驱动的节能原理

    首先,需要明确抽油机的负载特性:恒速运行;由于有配重,因此是变转矩、变功率负载。目前国内油田普遍采用的传统式抽油机系统存在如下特性:运行时间长、“大马拉小车”、效率低下、耗能大、冲程和冲次调节不方便,因此抽油机有必要使用变频器以实现节能、增产的目的。    

    任何平衡良好的抽油机都有发电状态,但是如果变频器运行时,仍采用恒速度运行方式,并保持工频时的抽油次数,即变频器一直输出50Hz的工频频率,并继续保持抽油机在一个冲程中有两次发电状态,将导致变频器因直流桥电压升高出现过电压故障,很明显的,这是不可行的。    

    如果允许变频器变速运行的同时保持原抽油次数,发电状态下变频器输出频率增加,将直流桥电压保持在一定范围内,此时变频器不会过压。为保持恒定的抽油次数,在电动状态下,变频器的运行速度将降低,即其输出频率减小,在转矩不变的情况下,从电网吸收的能量亦将减少;在发电运行状态下,变频器*再从电网吸收能量,并有部分能量存储在其直流电容中,这部分能量将用于电动状态下的供能,因此,抽油机从电网吸收的能量将进一步减少。    

    二、传统抽油机变频改造的难点

    随着生产对抽油机产量和节能要求的不断提高,国内对抽油机变频节能改造做了大量的试验,但都不太成功,主要原因是:

    1.游梁式抽油机在一个工作循环中,有两次发电状态运行,如果此时不采取任何有效的措施,将造成变频器过压故障。传统的解决方法是采用四象限、带反馈的变频器,或普通变频器带能耗制动或降频使用或在直流桥上并大容量储能电容。使用四象限、带反馈的变频器将增加系统的造价,延长油田收回成本的时间;使用普通变频器带能耗制动时,不同的油井将选用不同的制动电阻,并且随着油层的变化,制动电阻的大小也将随之变化,否则仍然会产生过压故障,这将大大降低节能的效果;普通变频器降频使用时,很难提高抽油的效率;在变频器的直流桥上并联大电容时,也需要随着油层的变化,改变并联电容的容量,否则仍会造成过压;    

    2.游梁式抽油机的起动需要较大的起动转矩,如果变频器的参数设置不当,将造成过流或不能起动的现象;    

    3.以往的设计方案很少考虑油井的油面、油浓度的变化等情况,在提高产量等方面,并不具备显著的效果。    

    三、VACON抽油机**变频节能驱动解决方案

    VACON抽油机**变频节能驱动解决方案主要基于VACON变频器的BeamPump应用宏软件包。该应用宏由VACON标准应用宏经过简单修改而成,是根据油田实际情况,以及梁式抽油机的机械结构,专门开发的新型智能化电气油田抽油机控制方式,它能自主判断抽油机运行的上下冲程,根据油井的实际情况,实时调节上下冲程的速度,从而在实际抽油时,不更改每分钟的抽油次数,但增加每次抽油时的采油量,提高抽油机的产量。    

    Vacon变频节能方案通过调整变频器内部的频率参考值,保证抽油时间(SPM)恒定。所有的参考指令都将折算为每分钟的抽油次数。控制的原理是:对正常工作给出合适的电流限制,在电动状态下,电机实际速度低于参考值;在发电状态下,允许电机速度**参考值,从而保持平均的恒定抽油时间。当使用平衡负载应用时对上下冲程使用两种不同的参考频率值。该方案的优点在于:    

    1.节能,增产

    控制器内无任何的制动电阻,当抽油机处于发电运行状态时,变频器自动提高电机的运行速度,并储存发电运行产生的能量,与传统设计方案相比,减少了不必要的能量损失。    

    2.运行安全,性能可靠

    驱动控制*任何PLC,而是基于变频器的**控制程序实现,并且具有工频和变频操作方式,这两种操作方式互锁,并相互独立,变频器具有宽广的输入电压范围,因此使系统的运行更安全,性能更加可靠。    

    3.人机界面友好,安装方便,操作简单

    变频器的显示面板可以直接显示变频器的输出电压,输出电流,输出频率,电机运行消耗的能量,运行时间,抽油次数等。变频器的运行参考值可直接设置抽油机的抽油次数,从而改善了传统的通过设置电机运行频率进行控制的操作方式。

    上述方案适用于目前常见的游梁平衡式、曲柄平衡式和复合平衡式三种传统的抽油机。实际应用中,当输入必须的抽油机参数后,控制器将对抽油机进行静态建模,并根据抽油机的实际运行情况,实时修改抽油机的数学模型,以达到增产节能的目的。




http://zhangqueena.b2b168.com

产品推荐