• 西门子6ES7223-1BM22-0XA8介绍说明
  • 西门子6ES7223-1BM22-0XA8介绍说明
  • 西门子6ES7223-1BM22-0XA8介绍说明

产品描述

产品规格模块式包装说明全新品牌西门值+ 包装说明 全新 - 产品规格子

西门子6ES7223-1BM22-0XA8介绍说明


盐矿现在仍雇佣了40个矿工从事一些采掘“白金”的钻探工作,多年来这里已经成为旅游胜地。在导游车通过游览隧道后,由一个电缆驱动倾斜式电梯将游客带回出口处,每年有40000参观者。电梯高度落差为23.5米,路程长54米,两层客舱可以容纳50人。
如何保证安全?
盐矿主人和南Bavarian采矿局对安全极为强调,因而对运转了20多年的倾斜式电梯的控制系统的现代化改进设计,也被当作是更换客舱电源的一个契机,利用可移动的电缆盘代替客舱电源,采用不易受到机械影响的电源解决方案,电源线可以不断在电缆盘上卷进和拉出。由位于德国Schweitenkirchen市的 Wildmoser Steuerungstechnik 公司规划和实施整个电气设备的更换。
首先,固定布线的旧继电器控制被换成现代化的故障安全PLC系统。有关采纳SIMATIC的决策很快被确定,其原因在于“我们已经有了从西门子的自动化技术获得成功的经验”,先前在矿区负责电气工程的Paul Hallinger这样解释。
来自Wildmoser的控制方案基于新的故障安全型 SIMATIC S7-300。故障安全型 SIMATIC S7-300带有F-CPU 315-2 DP,位于电梯机房上配电柜内的上部,同样也具有故障安全性能、分布式外围设备SIMATIC ET 200S PROFIsafe,被安装在客舱上的一个小型配电柜内。两个部件均符合对故障安全的较高要求,其中包括第4类机电工程行规DIN EN 954-1。F-CPU中的故障探测和控制信号处理基于时间分集的冗余原则。面向安全的运转采用不同算法处理。若在较后一个CPU循环上产生结果分歧,则CPU使系统切换到安全状态。
该种决策的优点在于,SIMATIC故障安全控制器可以处理标准信号和与安全相关的信号。不再需要单独的安全控制。此种面向安全的输入和输出信号占信号总量的一大半。有关客舱门和封堵通向电梯通道和机房的三道安全门的信号必须具有故障安全处理功能。一旦这几个门中的一个被打开,控制器立刻防止或中断电梯的运动。
安全通讯
位于电梯机房上端的配电柜里的控制器与客舱外部的分布式故障安全型外围设备之间通过PROFI-BUS DP进行通讯。PROFIsafe符合依据DIN EN 954-1的第4类行规,允许通过符合同样标准的PROFI-BUS DP电缆实现标准以及面向安全的通讯。通过例如连续计数、预期时间、和之间的识别以及额外数据备份等不同措施,利用PROFIsafe实现故障检测和排除。
为排除由于经常在电缆盘上卷进拉出电缆、而从根部发生的电缆断连事故的潜在危险,设备管理人员和操作人员选择了带有环形触点的*安装型230V总线系统。PROFIBUS数据也可以以此种方式从客舱传出或向客舱传入。为了实现,信号在一边被调制,通过19.2 Kbits/s的环路传递并到达,在另一边再被解调。以上提及的PROFIsafe机制再次在这里得到应用。如果信号未在给定时间到达,控制器将系统切换至安全状态。
熟悉的运行环境,安全的技术
对拥有Step 7使用经验的用户而言,**组态和使用故障安全型SIMATIC S7不成问题。这种“分布式安全型”软件包与其他工程设计工具一样可以与Step 7集成,并可采用KOP 和 FUP语言编程。用户可以通过预汇编的符合T哣标准的程序库组件或自己生成的组件(需要得到认可)随意选择自己的安全程序。 “一旦您开始熟悉这些安全机制”,Josef Wildmoser说,“将会大大减少组态和编程时间。”Josef Wildmoser认为在未来应用中可以很容易地节省大约50%的时间。另外,目前也能应用在安全设备上的简化PROFIBUS布线技术,大大缩短了安装和调试时间。
PROFIBUS通讯中集成了两个SIMATIC 操作面板 OP7,一个设置在电梯机房内的控制面板上,一个设置在客舱里。通过两个面板都可以操纵电梯,这意味着可以在运动中关闭电梯门,设置电梯。一个新特性是在发生故障的情形下,电梯可以以蠕动速度连续运动至出口平台,能够疏散乘客。
采矿的照明控制系统也通过一个DP/DP耦合器与电梯控制系统相连接,两个控制系统通过几个中继器连接到入口区的主控制系统。可以通过两个操作面板从上面控制倾斜式电梯的开启和关闭、以及安全制动器的运行状况监测。另外还设有进行照明控制的SIMATIC按钮面板。
包括总线系统在内的倾斜式电梯电气设备的更换仅仅花费了两周时间。花费一周的时间完成试运转,南Bavarian矿业局对该系统非常认可,没有提出反对意见。

邯郸钢铁集团一炼钢厂设置1#和2#两个混铁炉,每个混铁炉设有一个兑铁口和一个出铁口,混铁炉兑铁或出铁时,高温的铁水会同空气发生剧烈的化学反应,产生大量的烟气。一方面对现场操作的工人不利,另一方面也对环境造成了巨大的污染。为改善现场环境,降低污染,需要对混铁炉的兑铁、出铁进行除尘改造。该除尘设施配置Y4-73№29.5F除尘风机一台(配套电机功率800kw),混铁炉除尘风机需要五种风量来适应混铁炉兑出铁工艺要求,为了提高风机的运行效率,节能降耗,必须对风机进行调速控制。东方工业环保有限公司负责该混铁炉项目总承包,在以前的类似除尘项目中,多采用液力耦合器进行调速。近几年随着高压变频技术的进步,高压变频器的性价比有很大幅度的提升,液力耦合器逐渐失去优势,较终无锡东方选购了北京利德华福电气技术有限公司生产的Harsvert-A系列高压变频器对风机进行调速控制。混铁炉除尘风机高压变频器于2003年4月份调试完毕投入运行,至今已稳定运行一年多。 
一.除尘风机工艺要求 
邯郸钢铁集团一炼钢1#和2#两个混铁炉,当混铁炉既不兑铁也不出铁时不需要风量;当混铁炉工作时,一个兑铁口兑铁需要风量35万m3/h;一个出铁口出铁需要风量15万m3/h;两台炉出铁口同时出铁需要风量30万m3/h;当一台混铁炉的兑铁口和出铁口同时兑铁出铁时需要风量50万m3/h。两个混铁炉兑铁口不能同时打开,只能有一个兑铁口打开,两个混铁炉出铁口可以同时打开。
兑铁:由一台125t天车完成,铁水罐分为70t和100t两种规格,每罐兑铁时间为4-6min; 
出铁:按三台炼钢转炉同时生产20炉/班计算,单台混铁炉出铁30罐/班,每天三班,每班八小时,单罐出铁时间1-2min,两次出铁周期较短为8min,每班出铁累计时间30-60min。 
A到B为既不兑铁也不出铁时间;
B到D为一个出铁口出铁时间,其中B到C为风机升速时间;
D到F为两个出铁口出铁时间,其中D到E为风机升速时间;
F到H为一个兑铁口兑铁时间,其中F到G为风机升速时间;
H到J为一个兑铁口兑铁、一个出铁口出铁时间,其中H到I为风机升速时间;风机升速时可以根据需要跨越任一升速点;
J点风机开始减速。
J到L为一个兑铁口兑铁、一个出铁口出铁转换为一个兑铁口兑铁时间,其中J到K为风机减速时间;
L到N为一个兑铁口兑铁转换为两个出铁口出铁时间,其中L到M为风机减速时间;
N到P为两个出铁口出铁转换为一个出铁口出铁时间,其中N到O为风机减速时间;
P到R为一个出铁口出铁转换为既不出铁也不兑铁时间,其中P到Q为风机减速时间;
Q到R为既不兑铁也不出铁时间。 

二.调速要求 
为简化控制逻辑,现场直接根据出铁口、兑铁口的开关状态来控制变频器的转速,变频器预设5个速度点,根据现场所需风量不同自动调节电机转速。 
变频器内置PLC和中文的人机界面给现场调试工作带来很大便利,调试周期大大缩短。各种参数设置十分方便,根据现场烟气的多少,可以及时调整各速度段点的风量,除尘改造后,现场条件大为改善。 
三.节能计算
根据变频器的运行记录,统计风机在一天中各速度段的运行时间,得到如下运行数据: 
各速度段变频器的输入功率为:
P1=1.732×6×5.8×0.8=48.2kW
P2=1.732×6×25.1×0.8=208.7kW
P3=1.732×6×37.9×0.8=315.1kW
P4=1.732×6×23.89×0.8=198.6kW
P5=1.732×6×62.50×0.8=519.6kW
则使用变频器后一天风机所消耗的电能为:
48.2×3+208.7×7+315.1×4+198.6×7+519.6×3=4694.9 kW·h 
电价按0.4元计算,整个系统按照一年运行300天计算,则一年的电费为:
4694.9×0.4×300=56.3388万元
如果不使用变频器,电机始终工频运行,则一年的电费为:
P=1.732×6×76×0.8=631.8kW
631.8×24×300×0.4=182万元
节约电费约为:125.7万元
说明:以上计算仅为初步的理论计算,变频器节能情况是根据试运行时的数据计算,与具体运行情况存在偏差。
四.应用高压变频调速系统产生的其他效果
改善了工艺。投入变频器后除尘风机可以非常平滑稳定的调整风量,运行人员可以自如的调控,除尘风机运行参数得到了改善,提高了效率。
延长电机和风机的使用寿命。一般除尘风机均为离心式风机,启动时间长,启动电流大(约6~8倍额定电流),对电机和风机的机械冲击力很大,严重影响其使用寿命。而采用变频调速后,可以实现软起动和软制动,对电机几乎不产生冲击,可大大延长机械的使用寿命。
减少阀门机械和风机叶轮的磨损。安装变频调速后,风机经常工作在比原来定速时低150转/分的转速下运行,因此,大大减少了风机叶轮的磨损,减少了风机振动。延长风机的大修周期,节省检修费用和时间。
便于实现除尘控制系统自动化。除尘系统的的风量经常需要根据工艺的要求变化,在过去用挡板调节时,存在执行机构的开度与流量的关系曲线的线形问题。往往由于执行机构的磨损量过大,阀门特性发生变化,出现非线形问题,致使调节过程失误,自动控制系统无法正常工作。而变频调速始终保持在线形高精度0.1~0.01HZ的范围内工作,为实现除尘系统的自动化创造优越条件。 
五.调试经验总结:
1、 变频器同现场设备的接口要主要抗干扰问题。变频器受除尘系统的PLC控制,变频器提供的4路模拟输出2路进入控制柜上的仪表进行显示,2路进入PLC中参与各项保护。现场调试时发现,进入仪表的信号显示无误,而进入除尘系统PLC的信号却时有时无。现场测量PLC的模拟输出信号,一切正常。后来将除尘系统PLC可靠接地后问题解决。

2、 主要干式变压器的合闸涌流。HARSVERT-A系列高压变频器采用单元串联多电平技术,设有一台干式变压器。在邯钢项目中使用的干式变压器为F级绝缘的环氧浇注变压器,按变压器的使用说明书,合闸涌流应在6倍以内。变频器上级的高压开关的速断保护按照7倍整定,但给变频器送电时有时正常,有时高压开关的速断保护动作造成无法正常送电。后来将速断保护的定值由7倍增加到11倍,问题才得到解决。

202207281244519172844.jpg202202231632200382714.jpg

可编程控制器(PLC)是一种新型的通用自动化控制装置,它将传统的继电器控制技术、计算机技术和通讯技术融为一体,具有控制功能强,可*性高,使用灵活方便,易于扩展等优点而应用越来越广泛。但在使用时由于工业生产现场的工作环境恶劣,干扰源众多,如大功率用电设备的起动或停止引起电网电压的波动形成低频干扰,电焊机、电火花加工机床、电机的电刷等通过电磁耦合产生的工频干扰等,都会影响PLC的正常工作。
尽管PLC是专门在现场使用的控制装置,在设计制造时已采取了很多措施,使它对工业环境比较适应,但是为了确保整个系统稳定可*,还是应当尽量使PLC有良好的工作环境条件, 并采取必要的抗干扰措施。

2 PLC在安装和维护时应注意的问题

2.1 PLC的安装
PLC适用于大多数工业现场,但它对使用场合、环境温度等还是有一定要求。控制PLC的工作环境,可以有效地提高它的工作效率和寿命。在安装PLC时,要避开下列场所:
(1)环境温度超过0 ~ 50℃的范围;
(2)相对湿度超过85%或者存在露水凝聚(由温度突变或其他因素所引起的);
(3)太阳光直接照射;
(4)有腐蚀和易燃的气体,例如、硫化氢等;
(5)有打量铁屑及灰尘;
(6)频繁或连续的振动,振动频率为10 ~ 55Hz、幅度为0.5mm(峰-峰);
(7)超过10g(重力加速度)的冲击。
小型可编程控制器外壳的4个角上,均有安装孔。有两种安装方法,一是用螺钉固定,不同的单元有不同的安装尺寸;另一种是DIN(德国共和标准)轨道固定。DIN轨道配套使用的安装夹板,左右各一对。在轨道上,先装好左右夹板,装上PLC,然后拧紧螺钉。为了使控制系统工作可*,通常把可编程控制器安装在有保护外壳的控制柜中,以防止灰尘、油污、水溅。为了保证可编程控制器在工作状态下其温度保持在规定环境温度范围内,安装机器应有足够的通风空间,基本单元和扩展单元之间要有30mm以上间隔。如果周围环境超过55C,要安装电风扇,强迫通风。
为了避免其他外围设备的电干扰,可编程控制器应尽可能远离高压电源线和高压设备,可编程控制器与高压设备和电源线之间应留出至少200mm的距离。
当可编程控制器垂直安装时,要严防导线头、铁屑等从通风窗掉入可编程控制器内部,造成印刷电路板短路,使其不能正常工作甚至*损坏。

2.2 电源接线
PLC供电电源为50Hz、220V±10%的交流电。
FX系列可编程控制器有直流24V输出接线端。该接线端可为输入传感(如光电开关或接近开关)提供直流24V电源。
如果电源发生故障,中断时间少于10ms,PLC工作不受影响。若电源中断超过10ms或电源下降超过允许值,则PLC停止工作,所有的输出点均同时断开。当电源恢复时,若RUN输入接通,则操作自动进行。
对于电源线来的干扰,PLC本身具有足够的抵制能力。如果电源干扰特别严重,可以安装一个变比为1:1的隔离变压器,以减少设备与地之间的干扰。

2.3 接地
良好的接地是保证PLC可*工作的重要条件,可以避免偶然发生的电压冲击危害。接地线与机器的接地端相接,基本单元接地。如果要用扩展单元,其接地点应与基本单元的接地点接在一起。为了抑制加在电源及输入端、输出端的干扰,应给可编程控制器接上**地线,接地点应与动力设备(如电机)的接地点分开。若达不到这种要求,也必须做到与其他设备公共接地,禁止与其他设备串联接地。接地点应尽可能*近PLC。

2.4 直流24V接线端
使用无源触点的输入器件时,PLC内部24V电源通过输入器件向输入端提供每点7mA的电流。
PLC上的24V接线端子,还可以向外部传感器(如接近开关或光电开关)提供电流。24V端子作传感器电源时,COM端子是直流24V地端。如果采用扩展船员,则应将基本单元和扩展单元的24V端连接起来。另外,任何外部电源不能接到这个端子。

如果发生过载现象,电压将自动跌落,该点输入对可编程控制器不起作用。
每种型号的PLC的输入点数量是有规定的。对每一个尚未使用的输入点,它不耗电,因此在这种情况下,24V电源端子向外供电流的能力可以增加。
FX系列PLC的空位端子,在任何情况下都不能使用。

2.5 输入接线
PLC一般接受行程开关、限位开关等输入的开关量信号。输入接线端子是PLC与外部传感器负载转换信号的端口。输入接线,一般指外部传感器与输入端口的接线。
输入器件可以是任何无源的触点或集电极开路的NPN管。输入器件接通时,输入端接通,输入线路闭合,同时输入指示的发光二极管亮。
输入端的一次电路与二次电路之间,采用光电耦合隔离。二次电路带RC滤波器,以防止由于输入触点抖动或从输入线路串入的电噪声引起PLC误动作。
若在输入触点电路串联二极管,在串联二极管上的电压应小于4V。若使用带发光二极管的舌簧开关,串联二极管的数目不能超过两只。
另外,输入接线还应特别注意以下几点:
(1)输入接线一般不要超过30m。但如果环境干扰较小,电压降不大时,输入接线可适当长些。
(2)输入、输出线不能用同一根电缆,输入、输出线要分开。
(3)可编程控制器所能接受的脉冲信号的宽度,应大于扫描周期的时间。

2.6 输出接线
(1)可编程控制器有继电器输出、晶闸管输出、晶体管输出3种形式。
(2)输出端接线分为独立输出和公共输出。当PLC的输出继电器或晶闸管动作时,同一号码的两个输出端接通。在不同组中,可采用不同类型和电压等级的输出电压。但在同一组中的输出只能用同一类型、同一电压等级的电源。
(3)由于PLC的输出元件被封装在印制电路板上,并且连接至端子板,若将连接输出元件的负载短路,将烧毁印制电路板,因此,应用熔丝保护输出元件。
(4)采用继电器输出时,承受的电感性负载大小影响到继电器的工作寿命,因此继电器工作寿命要求长。
(5)PLC的输出负载可能产生噪声干扰,因此要采取措施加以控制。
此外,对于能使用户造成伤害的危险负载,除了在控制程序中加以考虑之外,还应设计外部紧急停车电路,使得可编程控制器发生故障时,能将引起伤害的负载电源切断。
交流输出线和直流输出线不要用同一本电缆,输出线应尽量远离高压线和动力线,避免并行。



http://zhangqueena.b2b168.com

产品推荐