• 西门子模块6GK7243-1GX00-0XE0介绍说明
  • 西门子模块6GK7243-1GX00-0XE0介绍说明
  • 西门子模块6GK7243-1GX00-0XE0介绍说明

产品描述

产品规格模块式包装说明全新品牌西门值+ 包装说明 全新 - 产品规格子

西门子模块6GK7243-1GX00-0XE0介绍说明


目前,我国电站锅炉风机,特别是一次风机在运行中普遍存在耗能高、噪音大的问题。华北电网已有多家电厂在已建机组和新建机组离心式一次风机上应用变频调速器。风机变速调节后,风机耗功降低、运行效率提高、厂用电率降低,节能效果显著,但有些改造项目出现新的问题:如在机组大负荷时发生“抢风”现象;一次风机电机前侧轴承过热、损坏;一次风机RB时造成变频器过负荷保护动作继而导致机组MFT 动作,严重影响了风机及锅炉的安全、经济运行。


针对一次风机RB的思考:相同的一次风机,为什么采用入口挡板调节时一次风机RB成功实现了,而变频调速改造后一次风机RB却失败了?如何抑制RB后一次风压大幅下跌?如何控制RB后汽温急剧下降?机组RB时采用定压方式好还是滑压方式好?

一、机组快速甩负荷的含义

机组快速甩负荷(RB或RunBack)的含义:机组的主要辅机,如一次风机、送风机、引风机、空气预热器及锅炉汽动给水泵、炉水循环泵等,有一台发生故障时,协调控制系统(CCS)快速发出,按一定幅度减少机组实际负荷的指令。通过锅炉、汽机主控制器分别对燃烧、给水、汽温以及汽机DEH等控制调节系统进行调整,使机组的负荷及相关参数较终达到单台辅机的能力工况,以保证安全运行。

RB属机组的安全功能之一,为实现RB功能,要求CCS和BMS 两大控制系统协调动作。除一次风机的RB指令由BMS本身发出之外,其余的RB指令均由CCS发出,RB的逻辑示意图见图1。

RB模块根据其内部设定的降负荷速率及目标负荷指令动作,锅炉负荷按预定的速率降低,燃料量的减少除由燃料调节器调节外,还由BMS系统按一定逻辑停相应的给煤(粉)机,或投相应的油共同配合完成。RB过程中,机前压力由汽机自动控制。当BM S 接受RB指令后,首先发出报警信号并送出数据记录(DL)信号到数据采集系统(DAS)。与此同时,停掉较上面一层运行的磨煤机。接着,由CCS降低各运行层给煤机转速,在F层煤粉停掉10s后,如RB命令继续存在,则BMS停止E层磨煤机,而CCS继续降低给煤机转速。10s过后,如RB指令仍然存在,则BMS将D层磨煤机停掉,最后保留A、B、C三层磨煤机运行。

单台送、引风机事故跳闸后,同侧的引、送风机通过联锁而自动跳闸停运。

若D、E、F三层磨煤机停掉后RB指令依然存在,则表明另一台功能相同的辅机亦出故障,其导至MFT动作。

二、一次风机变速调速时实现RB功能

能否实现一次风机RB功能,需考虑以下两点因素。

1.一次风机及其系统设备特性

(1)单台一次风机的参数和裕度

大型机组,单台一次风机一般按50%机组负荷设计。设计容量越大,对实现一次风机RB功能越有利,但对节能不利。风机设计裕度过大,会造成一次风机单耗过大,特别是采取挡板调节时,大量能量白白浪费在风机节流损失上;即使采取变频调速,选用过大的压头和流量裕度,也会造成低负荷时,风机运行在风机性能曲线较高点的左侧,导致风机并联困难,两台风机发生“抢风”现象。单台一次风机带负荷能力还应从减少空气预热器漏风;改进一次风系统管道和风门;完善热控联锁保护逻辑几方面入手,采取对策。

(2)系统漏风

采用正压直吹式制粉系统的电厂,普遍反映一次风机RB成功得不多,单台一次风机带负荷能力不足,常导致全部磨煤机跳闸或MFT动作。究其原因,往往不是选型小,而是系统漏风严重,这是问题的根本原因所在。一次风机RB过程中,单台一次风机运行时,负荷逐渐降低,空气预热器(下称空预器)漏风会不断增大;运行磨煤机台数系统切换过程中,一次风系统管网阻力发生变化,一次风走捷径,通过两台空预器及一次风联络门旁路大量的风量,跳闸风机入口反窜出大量漏风。

①一次风管道漏风

对一次风管道中的人孔、法兰等处进行查漏,漏点,减少漏风量。必要时对制粉系统进行打压、查漏。

②空预器漏风

影响空预器漏风的因素有一次风压、烟气温度、制造工艺等。

空预器漏风率与一次风漏风率属不同概念,前者是指一、二次风总的漏风情况,三分仓回转式空预器,其设计漏风率一般为6%~10%。其中一次风漏风量占总漏风量的绝大部分,高达80% 以上。低负荷时一次风漏风率占总一次风量的30%~40% ,或更高。

空预器的漏风率作为机组达标投产的一项主要考核指标,在投产初期,一般都能达到。而在机组长周期运行中,则普遍存在漏风率超标现象。空预器密封间隙增大与空预器低温腐蚀以及转子变形、密封片磨损等因素密切相关。

随着机组负荷的不断降低,一次风系统漏风率呈增加趋势;相同负荷下一次风漏风率与运行方式有关,如运行一次风风压、磨煤机运行台数等因素。

空预器堵灰会增加一次风系统管网阻力,限制风机的出力。

(3)未投运磨煤机

RB逻辑中没有考虑未投运磨煤机的通风情况,仅跳闸上层运行磨煤机,只保留运行磨煤机中下层2~3台磨煤
1)一次风机出、入口门

风机出、入口门严密性差;一台风机运行,另一台停运抢修或启动时风机反转,造成风机启动困难。在一次风机采用变频调速时,此现象更**。为此不利因素,建议一次风机出口加装气动严密速断门或止回门。

风机出、入口门关闭时间长:如某600MW机组一次风机出口、入口挡板关闭时间长,分别为65s、95s,事故跳闸的一次风机停运中,从风机入口反窜大量漏风。

将一次风机出口挡板改为气动速关门,而且必须关闭严密。这是保一次风压迅速恢复正常,一次风机变频器不跳闸的较有效手段。

风机出口截止门逻辑中,应设计为“风机跳闸应无延时联锁关,风机启动时不联锁开”。有利于风机跳闸和并列时防止反窜漏风现象发生。

防止反窜漏风的另一项措施是跳闸风机出口的调温风门在RB触发后联锁关闭,减少一次风回流。

2)空预器的一次风机侧进、出口挡板

有经验的运行人员,在发生一次风机RB情况下,如若一次风压降得太低,适时将跳闸侧的烟道上空预器的一次风机侧进、出口挡板关闭,尽快地建立一次风压,维持炉内正常燃烧,可以有效地防止锅炉灭火。因此“空预器运行时一次风机侧进出口挡板禁关”这一条是不可取的,应设计为“关允许可操作”,以为运行调节提供方便和手段。

3)冷一次风管道及其联络门

此联络风门建议在两台风机运行时,处于严密全关位;RB逻辑中,应设计有联锁关风门的逻辑。一次风机RB成功后,再根据需要考虑是否打开。现在已有许多新建机组业已取消一次风机出口联络风道及联络风门。对于托可托电厂一期600MW机组一次风机出口设计有联络风道但没有设计联络风门,在其对一次风机变频改造后存在隐患,建议增加一次风联络风门,机组启动时在全关位,机组一次风机RB后待一次风压稳定后,根据停运一次风机侧空预器排烟温度情况打开此门对空预器进行冷却。
1)一次风机出、入口门

风机出、入口门严密性差;一台风机运行,另一台停运抢修或启动时风机反转,造成风机启动困难。在一次风机采用变频调速时,此现象更**。为此不利因素,建议一次风机出口加装气动严密速断门或止回门。

风机出、入口门关闭时间长:如某600MW机组一次风机出口、入口挡板关闭时间长,分别为65s、95s,事故跳闸的一次风机停运中,从风机入口反窜大量漏风。

将一次风机出口挡板改为气动速关门,而且必须关闭严密。这是保一次风压迅速恢复正常,一次风机变频器不跳闸的较有效手段。

风机出口截止门逻辑中,应设计为“风机跳闸应无延时联锁关,风机启动时不联锁开”。有利于风机跳闸和并列时防止反窜漏风现象发生。

防止反窜漏风的另一项措施是跳闸风机出口的调温风门在RB触发后联锁关闭,减少一次风回流。

2)空预器的一次风机侧进、出口挡板

有经验的运行人员,在发生一次风机RB情况下,如若一次风压降得太低,适时将跳闸侧的烟道上空预器的一次风机侧进、出口挡板关闭,尽快地建立一次风压,维持炉内正常燃烧,可以有效地防止锅炉灭火。因此“空预器运行时一次风机侧进出口挡板禁关”这一条是不可取的,应设计为“关允许可操作”,以为运行调节提供方便和手段。

3)冷一次风管道及其联络门

此联络风门建议在两台风机运行时,处于严密全关位;RB逻辑中,应设计有联锁关风门的逻辑。一次风机RB成功后,再根据需要考虑是否打开。现在已有许多新建机组业已取消一次风机出口联络风道及联络风门。对于托可托电厂一期600MW机组一次风机出口设计有联络风道但没有设计联络风门,在其对一次风机变频改造后存在隐患,建议增加一次风联络风门,机组启动时在全关位,机组一次风机RB后待一次风压稳定后,根据停运一次风机侧空预器排烟温度情况打开此门对空预器进行冷却。
目前设计RB逻辑中保留的运行磨煤机,没有考虑隔层燃烧情况,修改为“保留运行磨煤机中下层相邻煤层”对燃烧稳定更为有利,某些煤层组合隔层燃烧时(如A、C、D、E、F煤层满负荷运行,RB时,相继F、E、A煤层跳闸,只保留C、D煤层),也有抑制汽温急剧下降的作用。

所以RB逻辑中若设计有自动投油助燃逻辑(其原因在于单台一次风机不能带两台磨运行),则既保证一层磨煤机的燃烧稳定,同时又可以防止全炉膛MFT动作,即在任一台一次风机跳闸后,可立即自动投入油助燃。

1)一次风压控制

一次风机自动调节的一次风压指空预器后热一次风母管压力。控制一次风压定值是,锅炉负荷或运行中单台磨煤机较大煤量的函数关系,随着锅炉负荷或煤量增大而增大。压力定值由于制粉系统阻力不同而变化,较小定值一般比制粉系统设计阻力大1 kPa,减少了一次风机的电耗及空预器的一次风漏风;通过运行优化,降低一次风压,一次风系统漏风率有所降低,空预器漏风率呈下降趋势。

高值则是以磨煤机风量和风温调节门有调节裕度,磨煤机及其管道不堵煤不积粉为原则所对应的风压。

FSSS系统的逻辑修改:在RB发生的情况下,延时联锁跳所有的未启动的磨煤机并且联锁关所有未启动磨煤机的进出口风门,这样可以防止风量从停运的磨煤机中流失、一次风压降低。或者当任一台一次风机跳闸及对应磨煤机O FF 信号均存在时,关闭对应磨煤机冷、热风调节挡板,这样可以防止风量从停运的磨煤机中流失。

2)提高一次风系统稳定性

磨煤机一次风量低时,原跳磨煤机的逻辑改为跳给煤机,或者取消风量低保护,防止因风量测量管堵粉保护误动,提高系统稳定性。一次风与炉膛差压低低时,原一个逻辑开关动作跳所有磨煤机,宜改为一次风与炉膛差压低三取二信号与该磨煤机风量低相“与”后跳磨煤机,提高了可靠性。

(2)汽温控制回路

RB逻辑设计为在很短时间内,切除上层磨煤机,燃料量骤降,导致燃烧强度降低和燃烧中心下移,引起汽温、汽压的急剧下跌。大多数电厂RB时,主汽温度急剧下降20~30℃,若减温水未及时切掉,主汽温度甚至跌到480℃,严重威胁着机组的安全运行。因此这种情况下可以在主、再汽温的控制逻辑中加入RB触发信号的脉冲信号,直接强关(适当延时)汽温调节门。是否联锁关闭减温水电动门则根据现场实际情况而定。控制得当RB时过热汽温控制在520℃左右。

RB逻辑设计有,当RB触发时联锁停止锅炉本体吹灰器(特别是炉膛吹灰器);联锁关调门前后隔离阀,减少漏流等措施对汽温控制也是有利的。
(3)压力控制回路

RB触发后,机组从协调控制方式自动切换至机跟炉协调方式或机跟随方式,汽机调节主汽压力。压力控制方式有定压、滑压两种。RB工况时,若采取定压方式则存在锅炉热容量骤减、定值较高的情况。此时汽机调门势必关得过小,同时可能造成汽压过高,锅炉上水困难,机组有可能因汽包水位低而M FT 动作,影响机组安全和经济性。

滑压运行相对于定压方式而言,相同目标负荷下可以使主汽温不至于下降太多。所以大多数电厂,RB工况采用滑压方式。但RB时滑压曲线压力不可降得太低,否则会造成汽机主调门关得缓慢,RB过程延长;同时压力变化过大,会造成由于汽包压力波动而引起的水位波动及虚水位现象,不利于机组的安全运行。

RB发生后,CCS若切至汽机跟随方式运行,主汽压由调门控制,同时负荷的下降速度受调门动作的影响很大,这就要求在RB过程中主汽压设定值的降压速率要与炉侧燃烧特性一致。由于锅炉蓄热量大,RB刚开始一段时间内,负荷下降缓慢,主汽压下降较少,随后,由于燃料大幅度减少的作用,主汽压大幅度下降,调门快速关闭以维持汽压,这样容易造成负荷的过调。

建议RB后联锁将运行方式切至机跟炉协调方式,这样对稳定负荷有利。但对于热电厂建议采用机跟随方式,RB过程是否结束应以锅炉指令下降到目标值为准,而不能以机组有功功率降至目标值为标志。

分析一次风机RB失败原因得出,当从ECR工况被迫迅速调整为50% 能量工况时,锅炉蒸发量大大减少,汽包压力渡过其惯性时间(约10s)后迅速下降,由于下降速率过大,使水位产生动态扩容现象,从而造成水位高保护动作。因此,实现该RB工况的关键点就是必须限制汽包压力降速率在一个合理安全的范围内。由于汽包压力与主汽压力存在单值对应关系,限制了主汽压降的速率。经过对ECR 工况附近水位动态扩容分析计算,以及运行经验数据表明,当主汽压降速率不大于1MPa/min 时,水位动态扩容较弱,其虚水位幅量较小。

滑压速率不大于0.5MPa/min 时,对于300MV和600MV机组RB滑压曲线降压幅度一般设为16.5~14.5M Pa。

(4)辅机控制回路

当单侧辅机故障跳闸后,联锁跳掉同侧某些辅机,以保证机组参数的相对稳定。

增加必要的超驰控制和前馈控制。RB触发初期,控制量偏差大,导致调节品质恶化,也会引发运行工况的恶化,甚至跳机。增加必要的超驰控制和前馈控制,抑制调节量和设定值的偏差增大趋势,有助于闭环调节品质。如果仅依靠偏差进行调节,势必由于受调节器速度的限制,执行机构来不及动作,引起RB初期运行工况的不稳定;在快速减燃料的同时,采取适当的前馈量,确保负荷、煤量、水量、风量等的迅速平衡。

根据调节对象执行机构的响应时间来确定选用PID调节还是超驰(或OVATION平衡块的指令叠加)调节等手段。对于一次风机如果采用入口调节挡板调节,其全行程时间长,一般在60~90s,响应时间较长,采用跳闸风机指令叠加在运行风机上,并按一定速率释放至执行机构,实践证明此法行之有效、可靠;而对于采用双级动叶调节或变频调节的一次风机,其全行程时间长,一般在10~15 s,响应时间较快,若采用指令叠加的平衡块调节,可能导致一次风机调节机构动作过快而导致电机过流保护动作。因此一次风机双级动叶调节或变频调节时,一次风压偏差宜采用PID调节器控制。

为有效防止一次风机RB电机和变频器过流或过载保护动作,设计电机或变频器超电流闭锁增输出指令逻辑也切实可行。由于一次风系统阻力不同,其出力也不尽相同,因此根椐单台风机带50% 负荷出力试验来确定挡板或动叶开度和转速来限制一次风机调节指令上限的方法不够科学。

(5)其他

RB速率的确定:RB速率确定了锅炉减燃料的速度,过快或过慢都会造成机组参数的不稳定。应根据不同辅机情况采取相应的速率。对于一次风机RB速率比其他辅机要大些。RB实际过程时间,一般300MV机组在3~4min,600MV机组在5~6min后趋于稳定。

RB发生过程中,由于大部分过程参数波动较大,控制系统应屏蔽迫升、迫降功能,解除氧量自动,短时保持屏蔽压力、送风量、炉膛压力、汽包水位、氧量等偏差大强切手动MRE 逻辑,以免增加系统的不稳定性。

减少执行机构的死区:辅机调节动叶或导叶开度和负荷的变化率,如某300MV电厂一次风机额定负荷时,入口导叶开度仅为30% ,则每10MV负荷变化,导叶变化为1% ,而执行机构的死区为2% ,导致一次风压反应慢,波动大。可以通过调整侍服机构和执行机构调节范围(重新确定全开位),提高反应灵敏度,从而提高调节品质。

三、结论和建议

1.对一次风机进行节能降耗变频调速改造时,须对一次风机及其系统进行必要的改进,以适应变频调速时实现RB功能的需要;前弯型式一次风机不适宜进行变频改造。

2.减少空气预热器漏风;一次风机出口门改为严密性强的气动快关门和取消一次风机出口冷风联络管道(或关严其联络门)是实现一次风机RB功能的重要措施。

3.根据一次风机调节执行机构的响应时间来确定选用PID调节还是超驰(或OVATION平衡块的指令叠加)调节等手段。

4.完善一次风系统风门热控联锁保护逻辑;避免一次风量从停运一次风机入口反窜;防止一次风机变频器保护动作是实现一次风机RB功能的主要措施。

202202231632210850864.jpg202202231632201151664.jpg

一般规定城市管网的水压只保证五米以下楼房的用水,其余上部各层均须 “提升”水压才能满足用水要求。以前大多采用传统的水塔、高位水箱,或气压罐式增压设备,但它们都必须由水泵以高出实际用水高度的压力来“提升”水量,其结果增大了水泵的轴功率和能量损耗。
 变频调速技术及其应用    交流电机变频调速技术是近年来发展起来的一项。主要原来是根据电机不同的负荷、工艺或转矩要求,通过交流变频调速器调节电动机的转速,使其改变电机主轴的输出特性。变频调速技术应用于水泵风机等流体负载时,可使流体的流量、压力根据实际需要自动恒压或恒调节。它比采用阀门、节流孔板调节流量或压力节省电能,同时延长设备使用寿命,占地面积大,设备启动频繁,电流和水压冲击严重,设备维修量大等问题。    根据流体力学原理,水泵的流量与电机转速出正比,压力与电机转速的平方成正比,所以风机水泵采用变频调速技术后,节能效果比采用阀门控制压力或流量的方法可节电40% ~ 50%,节水7%。    常规水泵大部分时间均在额定负荷下运行,特别是自来水厂和居民区生活供水,其设计均按较大用水负荷选择水泵,而每天24h用水负荷变化很大,在夜间用水量更少,采用变频恒压供水设备,可根据用水量的大小变化,自动调节水泵转速,同时确保供水压力恒定,不仅可节约大量能源,延长设备使用寿命,又解决了水源二次污染问题,是一种十分理想的高科技节能产品。 全自动变频恒压供水设备组成及控制方式    变频恒压供水设备由风泵类**型交流变频调速器、**微机控制恒压变流量程序软件、远转压力传感器,压力上下限控制器,放气阀门等构成。根据不同的需要,可采取恒压控制、恒流量控制、恒温控制等多种闭环自动控制方法。 应用范围•居民区、住宅楼、村镇的集中生活供水系统。•高层建筑、宾馆、饭店等生活供水系统。•综合市场、写字楼、商务楼宇的生活供水系统。•自来水厂、供水加压泵站。•工矿企业的生产、生活供水、恒压流量供水工艺流程等。
•生活区、高层等热水供给和热水采暖系统。•各种类型中央空调的循环泵、冷却水供应系统。•深井泵(深井泵、潜水泵)恒压供水系统。•污水处理厂、排水站的自动控制供水系统。•石油化工等行业的流体负载的流量、压力控制系统。•各类鼓风机、引风机、排风机、空调风机、冷却塔风机等风量控制系统。 技术指标及参数•流量:3~5000m3/h•扬程:15~250m•电机功率:0.75~280kW•压力精度:<0.01Mpa•水泵台数:单台或多台•启动方式:软起动•控制方式:自动、全自动、手动•环境湿度:<95%(无结露)•环境温度:0 ~ 40℃(无结冻)•电源电压:0<±10% 设备特点与功能•采用进口高性能**变频调速器,配置**微机控制技术,根据需要设定压力,在恒定压力的基础上随着供水量的变化自动调节水泵电机转速,实现恒压变流量的节能供水。•微机控制可变频运行,又可恒频运行或多台水泵递次循环软起动,无水压波动和电源电网频繁启动而出现的冲击电流,延长设备使用时间。•水管网压力上、下限自动保护功能。•运行技术参数LED显示,直接显示运行频率、设定频率(压力)、运行电流、所耗功率、加减速时间等。•备有远程监控通讯接口。•自动故障保护:过载保护、短路保护、过电压保护、缺相保护、欠压保护、过热保护、过电流保护以及过电压、过载、欠电压瞬间断电自动恢复再启动功能。 设备选用指南全自动变频恒压供水设备为无水箱、无水塔、无压力罐的自动供水系统,水泵的供水能力应满足用水高峰时较大用水量及管网较不利地点的供水压力要求。
一、变频恒压供水系统的构成及原理
 变频恒压供水控制系统通过测到的管网压力,经变频器的内置PID调节器运算后,调节输出频率,实现管网的恒压供水。变频器的频率超限信号(一般可作为管网压力极限信号)可适时通知PLC进行变频泵逻辑切换。为防止水锤现象的产生,泵的启停将联动其出口阀门。
 系统工作原理如下。设整个系统由四台水泵,一台变频器,一台PLC和PID和一个压力变送器及若干辅助部件构成。各部分功能如下:安装于供水管道上的压力变送器将管网压力转换成1—5伏的电信号;变频调速器用于调节水泵转速以调节流量;PLC用于逻辑切换。
 此外,上述系统还配备了外围辅助电路,以**自动控制系统出现故障时可通过人工调节方式维持系统运行,保证连续生产。
二、设备选型说明
 变频恒压供水系统主要由变频控制柜、压力传感器、水泵等组成。变频控制柜由断路器、变频器、接触器、中间继电器、PLC等组成。
1. 供水系统选用原则
水泵扬程应大于实际供水高度。
水泵流量总和应大于实际较大供水量。
)变频控制柜选型:
 用户可根据供水量和供水高度确定水泵型号及台数,然后对控制柜进行选型。
三.应用范围
1. 该系统既可用于生产、生活用水,亦可用于热水供应,恒压喷淋等系统。
a. 可广泛用于工业企业、生活、生产供水系统及企业自备并改造工程,自来水厂、生活小区及消防供水系统。
b. 可用于各种场合的恒压、变压、冷却水和循环供水系统。
c. 可用于污水泵站、污水处理及污水提升系统。
d. 可用于农业排灌、园林喷淋、水景和音乐喷泉系统。
e. 可用于宾馆、大型公共建筑供水及消防系统。
2. 技术指标
a.较大供水高度:200米
b.较大流量:1000立方米/小时
c.压力波动:≤0.25兆帕
d.水泵电机功率:0.75KW-280KW
附:供水水压设定(参考)建筑物层数:1 / 2 / 3 / 4 / 5 / 6 / 7 / 8 / 9 / 10 / 1 / 12 / 13 / 14较低水压(MPa):0.1 / 0.12 / 0.16/ 0.20 / 0.24 / 0.28 / 0.32 / 0.36 / 0.40 / 0.44 / 0.48 / 0.52 / 0.56 / 0.60•供水流量选择:根据实际用水量计算选择水泵•设备安装条件:①室内:干燥,温度0~40℃,温度:<95%②电源:380V动力电源箱•设备长期运行*人员值守




http://zhangqueena.b2b168.com

产品推荐