• 西门子模块6ES7241-1AA22-0XA0质量**
  • 西门子模块6ES7241-1AA22-0XA0质量**
  • 西门子模块6ES7241-1AA22-0XA0质量**

产品描述

产品规格模块式包装说明全新品牌西门子

西门子模块6ES7241-1AA22-0XA0质量**

 1前言

    近年来,电力线通信技术发展非常迅速,现在已经进入初步应用阶段。PLC系统充分利用电力系统的广泛线路资源,通过OFDM等技术可以在同一电力线不同带宽的信道上传输数据。但是由于电网中传输的是强电,而且电网的稳定性比传统的通信网差得多,使得电力线通信线路的电磁环境较为复杂。这就给电力线通信系统提出了更高的电磁兼容要求,电磁兼容技术也成了实现电力线通信所需的关键技术之一。

    2各国际标准化组织对PLC的研究情况在世界范围内,IEC的CISPR/I分会以及ITU-T等国际组织对PLC的电磁兼容相关标准做了大量研究并讨论了相应技术要求。欧洲从2000年起开始研究PLC系统的技术框架和技术标准,目前已经取得了一定的进展。主要相关的国际组织有CENELEC和ETSI,前者侧重电磁兼容问题,后者侧重通信技术方面的统一标准。

    2.1IEC/CISPRI分会PLC设备属于信息技术设备,应符合IEC/CISPR22《信息技术设备的无线电干扰限值和测量方法》的要求。但是由于PLC设备非凡的工作模式,其传导干扰无法满足现行标准的要求。在2002年的IEC会议上曾有代表建议对CISPR22进行针对PLC的修改,增加一个专门针对PLC设备的“多用途端口”,其定义为:连接到低压分布式网络,支持数据的传输和通信,结合了电信端口和电源端口功能的端口。对于PLC设备,该文件建议要求它的传导干扰既满足现有标准电源端口的限值,也满足电信端口的限值。这样多用途端口的干扰测试就要进行两次:作为电源端口,用通常的V型网络进行测试,要求满足CISPR22中表1和表2的限值。作为电信端口,用新型的T型网络进行测试,要求满足CISPR22中表3和表4的限值。这种测试方法基于以下原理:消费类产品的电源是非对称干扰源,它所产生的干扰用V型网络来进行测试是非常合适的。

    与之相反,采用共模信号进行通信的电信端口,它所产生的干扰要比差模信号所产生的干扰小得多。T型网络很适合用于共模干扰的测量,因为适当的网络参数可以提供从差模信号到共模信号转换所需要的纵向转换损耗。针对以上的理论,该文件建议对CISPR22进行较大的修改,增加大量有关多用途端口的内容,以及相关的测试设备要求、试验布置要求和测试方法等。但是,这项建议没能获得较终的通过。参加会议的各个会员对这项建议的意见分歧很大,主要有:一部分CISPR会员认为PLC的相关内容应该转由CISPR/A分会负责,一部分会员对此表示反对,认为PLC的研究还是应该留在I分会中。有些会员对CISPR/I/44/CD提出的测试方法能否彻底避免PLC设备对其他设备造成的不良影响表示怀疑。有些会员认为这一测试方法违反了CISPR22中“被测设备应该工作在较大发射状态下”的原则。有些会员认为世界各地的电网状况不尽相同,确定一个合适的LCL值是很困难的。随后,在2005年的CISPR会议上,CISPR/I成立了一个非凡工作组来负责PLC相关标准的研究工作。该工作组将负责继续研究对CISPR22的相关修改,包括定义、限值、测试条件和测试方法等内容。

    非凡组共预备发表7份相关技术文件。2006年3月该组织发表了**份文件,介绍安装PLT设备的电网结构。主要阐述如下内容:

    1、电网拓扑结构,尤其是低压电网拓扑结构。当PLT系统工作时,接入终端的传输信道就是低压电力线。对于既有电力线不可能为了PLT系统进行大规模改造,因此必须充分了解低压电力线拓扑结构,非凡是农村、市区,居住环境、商业环境、办公环境的拓扑结构。才能进行PLT网络规划设计。

    2、PLT接入关键设备EMC特性:电网接入设备是PLT系统正常运行的关键之一。由于传统高压、中压、低压电网都是针对工频电力信号设计,所有设备的高频特性研究是十分艰巨的。非凡是低压电网设备产生的各种有可能直接通过电网与PLT通信信号相互叠加,影响PLC网络运行。其他技术文件会陆续发表。

    2.2ITU-T在ITU-T目前发布的EMC建议中,电力线通信网络和设备应符合K.60《电信网络电磁干扰限值和测量方法》的要求。K.60规定了从9kHz到3GHz频段通信网络的电磁辐射干扰限值,给出了9kHz到400GHz频段的测量方法,还提供了在通信网络中和寻找无线电干扰源的程序和一些解决干扰的措施。目前ITU-T*五研究组正在加紧研究关于针对PLC修订K.60的问题。欧洲EuropeanBroadcastingUnion等机构的代表递交文稿建议加严K.60的限值,从而防止PLC对其他广播和通信业务造成干扰,也有代表对此表示反对。各国代表目前正在积极地研究和搜集素材,以便为合理地管制PLC的电磁干扰提供依据。K.60并没有规定电源端口传导干扰方面的限值,只要在设计制造时适当采取控制电磁辐射干扰的措施即可。

    2.3CENELECCENELEC的TC205/SC205A/WG10和TC210/SC210A负责PLC电磁兼容标准研究工作。其中,SC205A研究物理和层。该工作组的研究发现,当考虑接入网络和室内网络共存的情况时,OSI的传统分层结构将不能满足需求。非凡值得关注的是,CENELEC和ETSI两个标准化组织5个专业机构联合组成了电信网络EMC标准联合工作组。2.4ETSIETSI专门成立了PLC研究工作组EPPLC,从2000年开始陆续公开了两个PLC技术规范和9个技术报告。EPPLC主要致力于制定PLC产品和系统的技术规范,已列入ETSI工作计划且与电磁兼容相关的共有如下几项:TR102258LCL回顾与统计分析;TR102259EMI回顾与统计分析;TR102270基本低压分布网络测量数据;TR102324电力线通信系统辐射发射特性与测量方法技术水平;TR1023703MHz~100MHzLVDN基础测量数据。

    3各国对PLC标准的研究

    目前定义了1~30MHz范围内电信网络辐射干扰限值的技术标准共有4个:德国的NB30、英国的MPTl570、美国的FCCPart15以及国际电信联盟于2003年7月推出的ITU-TK.60。其中,由各个国家制定的相关标准如下。

    3.1美国FCC

    高速PLC系统符合FCCpart15定义的载波电流系统。PLC系统通过电力线以传导的方式传输信号,可认为是无意发射源,因此47CFR§15.205的要求对PLC不适用。

    通常来讲满足辐射限值的系统可以保护正常工作的系统不受干扰。但是FCC不仅仅强调辐射限值的制定,考虑到不同的测量方法和测量过程存在测量不确定度,FCC认为一致性检验过程的制定也同样重要。FCCpart15规定的PLC辐射限值见表1。

    表1FCCpart15规定的PLC辐射限值

    用途频率(MHz)场强

    (dBµV/m)

    测量距离

    (m)

    测量带宽(kHz)检波器载波电流系统1.705-30.029.5309Quasi-peakClassA30-8839.110120Quasi-peakClassB30-88403120Quasi-peak

    3.2德国RegTP

    德国RegTP(TheRegulatingAdministrationforbbbecommunicationsandPostsofGermany)于1999年1月制定了NB30标准。规定了9kHz~3GHz通信系统辐射干扰限值,包括有线电视、xDSL、PLC等系统。NB30标准的辐射限值见表2。

    表2德国NB30标准规定的辐射限值

    3.3英国

    英国于2003年1月针对PLC系统制定了MPT1570规范,规定了9kHz~1.6MHz磁场辐射限值,见表3。该标准规定使用满足IECCISPR16-1的环天线和进行测量。主要目的是保护广泛使用的广播。

    表3英国MPT1570规范规定的辐射限值

    3.4.其他国家技术要求

    澳大利亚ACA不对525kHz以上频段进行要求奥地利**部门已经停止PLC试验计划,结论表明PLC在2~30MHz时引起的干扰不能减小到可接受的程度芬兰FICORA年报根据测量结果,决定只有在PLC技术解决干扰和安全问题后才能商用。在欧洲标准出台前,采用NB30限值日本MPHPT决定不给PLC系统增配许可频率。建议继续进行研究如何减小干扰问题

    由于FCC对PLC辐射限值制定较松,从而使PLC系统在美国得到迅速发展;欧盟一些国家持谨慎发展态度,欧洲各国正在等待欧盟标准的较终制定;BBC等传统广播通信系统出于自我保护的考虑,对PLC系统提出较苛刻的限制要求。

    4结论

    PLC技术的标准化工作至今仍在缓步进行,对传导干扰进行定义及限值制定等问题至今很难达成一致熟悉,但是作为一种资源广泛的通信网络技术,电力线通信的市场需求仍然存在,只有各方共同努力,才能使PLC系统更好地服务于广大用户。

在凹印生产过程中,套印波动现象经常发生,其影响因素较多,且不易察觉,处理起来难度也较大。本文仅从以下几个方面进行分析。

    1.电气故障引起的套印波动

    一般来说,凹印机套准系统的电气部分都是由检测部分、处理装置和执行机构构成的。任何一个环节工作不正常,都可能引起套印波动。因此,要想分析出套印波动的原因,必须熟知套印系统的电气原理。

    下面以法国ATN公司的凹印生产线为例,对套印电气原理进行一下分析。

    在各色印元中,印版滚筒每转一圈,就产生一个脉冲,它和由印元上编码器产生的500个脉冲一起进入编码电路板。通过编码电路板处理后,形成4个脉冲,又被送到纵向(或横向)套准电路板。在这里,这4个脉冲信号和检测印刷品上的光标得来的1个脉冲信号进行比较,如果此时套印出现偏差,套准电路板就会输出一个约5伏的电压进入PLC。经PLC处理后,再到步进电机驱动器,从而推动步进电机动作,达到套准调节的目的。

    检查由电气故障引起的套印波动,一般是采取顺藤摸瓜的方法。在了印系统电气原理的基础上,逐级检查各相关电气原件是否正常和电路是否畅通。但对调节某一具体机型凹印机的套准已具有相当经验后,也可采取跳跃性思维方式,这样能更快地找出故障点。

    2.机械故障引起的套印波动

    从实践经验来看,对套印系统机械方面的检查,没有什么固定的方法。只有对凹印机的机械部分了解和掌握后,熟知有哪些机械结构会对套印产生影响,才能尽快找到症结所在。当然,由于机械故障的“显现”一般比电气故障的“显现”明显得多,因此,要发现由此引起的套印波动也是比较容易的。

    比如,压印滚筒经过长期使用后,表面会出现比较明显的磨损痕迹,就会对套印精度产生影响。承印物越薄,对套印精度的影响就越大。另外,如果观察到压印滚筒在印刷过程中上下不停地振动,则很有可能是压印滚筒轴承损坏,这对印刷产品的纵向套准会产生影响。

    再如,印版滚筒未锁紧,会有微小窜动,常常引起横向套印出现突然性跳动。另外,导纸辊横向窜动,步进电机传动部分出现问题等,也都会引起套印波动。而且,这一类的套印故障,其表现基本上都是在生产过程中不时出现较大幅度的、突然性的套印跳动。

    3.其他方面因素引起的套印波动

    除了电气和机械方面的原因,其他方面引起的套印波动也不容忽视。

    首先,操作不当会引起套印波动。比如,张力大小设置不恰当,则设备在高速运转中,纸带会忽松忽紧,影响纵向套准。再如,烘箱温度设置过高,有可能导致纸张通过烘箱后变形过大,影响下一色的套印。

    其次,原材料和生产环境对套印也有影响。纸张过于疏松会使实际张力变化频繁,增加操作难度,所导致的套印不准大多表现在纵向;纸张边缘不整齐会使导纸系统不停动作,影响横向套印。生产环境的温、湿度状况,会对纸张在印刷过程中的变形大小有一定影响。

    总之,影响凹印套印的原因多种多样,其影响程度有大有小。但是,只要我们细心观察,认真总结,就一定能找出套印不准的症结所在,从而达到迅除故障,保证产品质量的目的。


202207281244519172844.jpg202202231632207636284.jpg

制浆造纸生产的自动控制,过去应用的范围十分有限,主要集中在制浆过程的局部简单仪表控制和纸机的电气传动控制方面,大量的控制内容是通过现场人工调整实现的。**以来,通过国外先进技术产品的引进,以及借鉴相关行业自动控制方面的经验,自动控制在造纸生产中逐步得到了应用,正朝着整厂集中控制的方向发展。近年来,许多厂家在生产过程的重点环节进行了自控系统的技术改造,如蒸煮控制、盘磨控制、配浆控制、上浆流送控制、纸机传动、纸机干燥部多段通气控制(热泵控制)和水分定量检测等方面,取得了明显的效果。

    1.1制制浆过程

    制浆过程的自动化控制主要集中在蒸煮、磨浆、配浆和打浆的控制,主要控制参数有:液位、温度、压力、流量和浓度等。从过程控制的层面上来说,一方面对生产过程的电动机和电磁阀进行逻辑、顺序的控制;另一方面对罐类和工艺管道上的各种阀门进行工艺参数的调节。制浆设备中,单体设备较多,由于种种原因,制浆设备本体的机电一体化产品不多,相当部分企业在制浆过程中自动化程度普遍不高。近些年盘磨、挤浆机、热分散等设备在自动化控制方面有了较大的进步,设备性能有所改善;在配浆和上浆浓度调节部分的改造较多,对提高和稳定产品质量,取得了一定效果。

    制浆生产的自动控制系统较初可以认为是仪表控制系统和继电器逻辑控制系统的结合,主要由二次仪表作为控制器来进行单回路或多回路的自动控制。许多厂家一直延用至今,基本上是一种独立、分离的控制。随着电子技术的发展,从20世纪80年代开始,以PLC为主品的控制器得到了普遍的应用。由于较初的PLC控制器以逻辑、顺序控制为主,形成了一方面采用PLC控制器进行电动机、电磁阀的联锁和控制;另一方面采用二次仪表作为控制器来进行单回路或多回路的自动调节控制。从80年代末期开始,PLC控制器的功能和技术概念发生了重大变化,以一个过程控制系统的面貌出现;而且在组态方便性和灵活性上有了很大改善,以其容量、速度、字长、周期等为指标,形成了系列产品,从而具备了从事复杂控制的能力。PLC控制器在制浆造纸生产的局部自动控制中得到了普遍的应用。

    新型操作终端的出现和CRT显示技术的进步,特别是PLC控制器通讯能力的加强,使智能的、动态的人机界面越来越多地应用在制浆生产的关键控制点,如蒸球、磨浆、配浆等部分,在被控现场配置液晶或等离子显示真彩操作终端,可方便的与PLC联接,融入控制器的操作系统中。触摸式界面在用户规定的刷新时间内提供各种实时数据,显示相关状态参数、设定值与实测值,且以数字量形式或棒图形式显示组态相关参数图形;同时,触摸式界面还具有各种操作功能,可进行参数的设定和逻辑控制。为了在控制室可清楚地反映生产过程的整体和局部信息,利用上位计算机,对生产过程进行集中监测、操作和管理。操作人员可以从控制室的显示器上所显示的不同画面中,观察到生产过程的状态,并在**的操作终端上或直接在控制显示器上对生产过程的各项工艺参数进行控制。

    制浆造纸的生产过程,从控制上来说,是一个多设备协调的联动系统,尤其是企业向着大规模化的方向发展,原有落后的控制方式越来越不能满足生产的要求。这样DCS就应运而生。

    DCS,即集散控制系统,又名分布式的计算机控制系统,是利用计算机技术对生产过程进行集中监测、操作、管理和分散控制的一种新型控制技术。它是由计算机技术、信号处理技术、测量技术、通信网络技术、CRT显示技术和人机接口技术相互渗透发展起来的。DCS集散型控制系统,从结构上讲就是将采集和控制分散在多个现场控制站,而将操作和监视功能集中在一个或多个操作站。它从硬件上采用标准化、模块化和系列化产品,系统上各工作站是通过网络接口相联接的,各工作站能完全独立地运行。系统的实时控制网络使系统资源共享,对系统结构组态进行在线修正、在线维修。它的**优点是系统的硬件和软件都具有灵活的组态和配置能力。软件的开放性尤为**。

    制浆造纸生产过程的DCS控制系统包括若干个子工段控制系统:如湿法备料及连蒸、白水回收、洗选、抄纸、烘缸三段通汽、上浆浓度和QCS等等。每个控制子系统既有着相对的独立性,又彼此互相联系。因此整个系统采用控制环节分散、数据处理集中的方式,即多操作站的DCS系统。DCS通过系统总线把车间和各工段的DCS联成一个网络。各DCS子系统主要由基本I/O单元、过程主站、操作站、报警站、操作终端、显示器、报警打印机和报告打印机组成,再加上生产现场的检测仪表和执行机以及控制中心组成一个完整的造纸生产的自动控制系统。DCS控制系统的系统结构一般分为过程控制级、自动化级和现场级。系统硬件配置一般为:

    工业控制计算机作为操作员站组成上位机管理系统。

    大型控制器组成自动化中心控制系统。

    操作显示终端作为现场人机界面。

    分布式远程控制站作为控制单元。  过程控制级的操作界面采用工业控制计算机,使用标准软件和网络,以实现过程诊断、过程监视、控制及信息管理。标准的显示和操作窗口,实时显示工艺流程控制点的过程参数,操作员可以很方便地通过动态画面,实时状态,如液位高低,阀门开度、电机启停等;同时,根据该工段的工艺流程需要,及时对设备进行控制。对于调节回路有两种控制方式,即自动调节和手动调节。当点击画面上的自动手动旋转开关,可以切换自动手动方式。在自动状态下,调节回路由PLC进行控制,自动调节阀门的开度。此时,若点击阀门,将出现提示窗口,提示此时是处于自动状态下,不能手动调节阀门。若处于手动状态下,操作工可以自行调节阀门开度。发现异常事件,作出提示、报警及处理命令;并可调阅与修改控制参数,远程切换工作状态,故障诊断及报表打印;也可保存生产报表及报警信息。过程控制级的PC机,通过生产管理网络,接受中心PLC的生产数据,向经营管理网络传送各类生产数据及接受各类生产任务。过程控制站的控制能力至关重要,主要以控制功能块的能力、数量、组态方便性和灵活性来衡量;过程控制站的可靠性和环境适应性同样重要,可通过冗余配置使其可靠性更高,但目前在造纸生产线的应用还很少见,其主要考虑的是其性能价格比的原因。

    自动化级均采用装有单处理器或多处理器的高性能大型PLC控制器。自动化级与过程控制级的通讯由工业以太网实现。与现场级的通讯由PROFIBUS-DP通讯网络实现,作为一部分的中心控制单元,根据工艺要求控制现场设备的运行状态。完成各现场PLC所组成的子系统之间的协调控制。目前较为普遍的配置是采用大型控制器组成自动化中心控制系统,即过程控制级。系统容易扩展和具备网络通讯能力;采用分布式结构,远程智能化接口提供了各种电压和保护等级的数字、模拟I/O单元,可以集中放置,也可以分散安装在现场。为使人员方便操作,并考虑到工艺工程师和控制工程师的需要,每一工段配置一台上位监控微机,作为普通级操作员站,操作员可通过上位机对现场设备进行操作和控制。

    现场级,主要由标准的系统产品连接在现场总线上。

    (1)现场操作面板。操作面板适合于分散的、与设备相关的控制和监视。不同的传动和传动组均可有标准的图形显示及相同的操作步骤。现场操作与显示终端以动态图形实时显示生产数据,现场操作人员可通过触摸屏操作现场设备。

    (2)远程I/O站。远程I/O站通过现场控制网络、联接中心控制PLC、交换各种实时信息;通过I/O口,联接智能过程控制仪、变送器等实施调节控制。根据现场设备的布局,采用分布式布局,就地实时响应生产过程事件,较大地减少了现场至控制室的电缆联线,使生产过程控制局部化、模块化,不仅提高了系统的性能,使风险系数降低,而且又有利于系统的扩展与维护。

    (3)驱动单元,如变频控制器,调节阀等。

    监控系统是DCS系统的一个重要组成部分,采用的过程监控系统的特点适合于对过程事件的快速反应。过程监控系统的基本功能:

    图形系统:通过组态,可构成丰富多彩的动态参数控制画面。

    信息报警:捕捉过程信息和本地事件,将这些内容归在档案库中,并在需要时有选择地提取它们,或直接转移到相关的过程画面上产生报警信息。

    生产报表:提供一套报表系统,可方便地对历史数据或即时数据组合生成用户所需的生产报表。

    工艺流程图:动态显示全厂工艺流程,使操作人员能了解全厂各工艺段的运行状况,便于调度管理。

    设备工况运行图:动态显示各厂内设备的实时运行状态,随时了解厂内的设备及生产情况。 浏览系统:在自动化系统的服务器中,应支持3~10个客户的网上浏览,这样,业主在一些管理或技术部门的办公室里,可以对整个工厂的运行情况进行浏览。

    系统自诊断:集成控制系统应有一套完整的自诊断功能,可以在运行中自动地诊断出系统的任何一个部件是否出现故障,并且在软件中及时、准确地反映出故障状态、故障时间、故障地点及相关信息。在系统或工艺设备发生故障后,I/O状态应返回到工艺要求预设置的状态上。

    系统操作权限:整个监控系统应有多个操作级别,每个级别均应有各自的用户和口令,它能防止用户越权存取显示数据和系统功能,具有相当高的性。

    1.2制造纸过程

    造纸过程的自动化控制**地表现在纸机的传动控制方面。因纸种变化,纸机的速比变化较大,浆料配比、不同纸张特性等,使纸机车速需要有较大范围的调整;同时电网电压、频率和负荷的波动,也会引起纸机车速的变化,烘干部各段不同的加热温度,都会使纸页产生纵向的收缩,因此,要求纸机传动控制系统是一个稳定、精确、同步、协调的变速传动系统。造纸生产过程的电气传动,分为定速传动和变速传动。定速传动主要有泵类、搅拌类电机,现在对于大功率定速电机的控制,已逐步推广采用具备良好起动功能的软起动控制器。由于纸机传动控制目前几乎毫无例外地采用多点分部传动的形式,客观上对自动控制系统提出了快速、精确、稳定和可靠等较高的要求;又因纸机传动在生产中的特殊重要地位,纸机电气传动控制的一般配置由较大型PLC控制单元、矢量型变频单元和生产管理计算机组成。运用PROFIBUS通讯协议构成先进的现场总线网络,传输各种生产数据,执行生产指令;控制各传动点的运行状态。

    近些年电气传动系统普遍采用国外进口控制装置,传动系统的稳速精度、动态响应和可靠性等方面得到了大大提高。其通讯功能强,具有多种通讯协议;参数范围广,可适用于各种应用场合;能自动测试负载特性,实现系统的较优化;

    能通过磁通电流控制自动进行负载补偿,完善的保护功能如:过温、过压、欠压、失步、接地错误等等;如力矩控制、张力控制、卷径计算等,能满足造纸工业的各种特殊工艺要求,使长期困扰厂家的国产模拟控制装置的诸多问题有了根本性的改变,提高了生产效益。目前传动系统已由较初的模拟控制向全数字网络通讯方向过渡,后者分辨率更高、控制更精确,同时,作为整厂集中控制系统的一个子系统,便于与其它有关部分通过数据网络联接,因此,一些*品牌高档次的控制器正越来越多地得到应用。

    与制浆过程所不同的是,纸机本体设备如:流浆箱、压光机、卷纸机、切纸机、复卷机等,设备本体配备的自动化技术水平是较高的。

    实践证明,纸机主传动系统自普遍采用数字式驱动装置以来,控制精度和系统的性得到了较大提高,已完**够满足纸机向大型、高速发展的需要。除此而外,上浆系统、蒸汽冷凝水系统、真空系统、损纸系统、涂料制备系统等控制也是十分重要的。

    QCS纸页质量检测控制系统是一种新型高技术产品,是纸机控制纸页质量的较有效的手段。目前国外产品占主要地位,国内研究开发多年,与国外产品尚有较大差距。目前在大中型纸机上的应用还是较为普遍的,为监测纸页水分定量,掌握工艺参数提供了很大帮助;便于产品质量的控制。但由于种种原因,绝大部分并未与上浆浓度和烘缸温度实现真正意义上的闭环自动控制。



http://zhangqueena.b2b168.com

产品推荐