• 西门子模块6ES7214-2AS23-0XB8量大从优
  • 西门子模块6ES7214-2AS23-0XB8量大从优
  • 西门子模块6ES7214-2AS23-0XB8量大从优

产品描述

产品规格模块式包装说明全新品牌西门子

西门子模块6ES7214-2AS23-0XB8量大从优

1前言

水质在线自动监测系统是一套以在线自动分析仪器为核心,运用现代传感器技术、自动测量技术,自动控制技术、计算机应用技术以及相关的**分析软件和通讯网络所组成的一个综合性的在线自动监测数据,统计、处理监测数据,可打印输出日、周、月、季、年平匀数据以及日、周、月、季、年较大值、较小值等各种监测、统计报告及图表(棒状图、曲线图多轨迹图、对比图等),并可输入中心数据库或上网。收集并可长期存储*的监测数据及各种运行资料、环境资料备检索。系统具有监测项目**标及子站状态信号显示、报警功能;自动运行、停电保护、来电自动恢复功能;维护检柞状态测试,便于例行维修和应急故障处理等功能。
实施水质自动监测,可以实现水质的实时连续监测和远程监控,达到及掌握主要流域重点断面水体的水质状况、预警预报重大或流域性水质污染事故、解决跨行政区域的水污染事故纠纷、监督总量控制制度落实情况、排放达标情况等目的。

2水质自动监测技术

2.1水质自动监测系统的构成
在水质自动监测系统网络中,中心站通过卫星和电话拨号两种通讯方式实现对各子站的实时监视、远程控制及功能, 托管站也可以通过电话拨号方式实现对所托管子站的实时监视、远程控制及功能,其他经授权的相关部门可通过电话拨号方式 产现对相关子站的实时监视和或能。
每个子站是一个独立完整的水质自动监测系统,一般由6个主要子系统构成,包括:采样系统、预处理系统、监测仪器系统、PLC控制系统、数据采集、处理与传输子系统及远程数据管理中心、监测站房或监测小屋。目前,水质自动监测系统中的子系统及远程数据管理中心、监测站房或监测小屋。目前,水质自动监测系统中的子站的构成方式大致有三种:
(1)由一台或多台小型的多参数水质自动分析仪(如:YS1公司和HYDROLAB公司的常规五参数分析仪)组成的子站(多台组合可用于测量不同水深的水质)。其特点是仪器可直接放于水中测量,系统构成灵活方便。
(2)固定式子站:为较传统的系统组成方式。其特点是监测项目的选择范围宽。
(3)流动式子站:一种为固定式子站仪器设备全部装于一辆拖车(监测小屋)上,可根据需要迁移场所,也可认为是半固定式子站。其特点是组成成本较高。
各单元通过水样输送管路系统、信号传输系统、压缩空气输送管路系统、纯水输送管路系统实现相互联系。
一个可*性很高的水质自动监测系统, 必须同时具备4个要素,即(1)高质量的系统设备;(2)完备的系统设计;(3)严格的施工管理;(4)负责的运行管理。

2.2水质自动监测的技术关键
2.2.1采水单元
包括水泵、管路、供电及安装结构部分。在设计上必须对各种气候、地形、水位变化及水中泥沙等提出相应解决措施,能够自动连续地与整个系统同步工作,向系统提供可*、有效水样。
2.2.2配水单元
包括水样预处理装置、自动清洗装置及辅助部分。配水单元直接向自动监测仪器供水,具有在线除泥沙和在线过滤,手动和自动管道反冲洗和除藻装置;其水质、水压和水量应满足自动监测仪器的需要。
2.2.3分析单元
由一系列水质自动分析和测量仪器组成, 包括:水温、PH、溶解氧(DO)、电导率、浊度、氮、化学需氧量、高锰酸盐指数、总**碳(TOC)、总氮、总磷、盐、磷酸盐、物、氟化物、氯化物、类、油类、金属离子、水位计、流量/流量/流向计及自动采样器等组成。各主要在线自动分析仪器的发展现状将地*3节详述。
2.2.4控制单元
包括:(1)系统控制柜和系统控制软件;(2)数据采集、处理与存储及其应用软件;(3)有线通讯和卫星通讯设备。
2.2.5子站站房及配套设施
包括:(1)站房主体;(2)配套设施

3在线自动分析仪器的发展
3.1概述
水质自动监测仪器仍在发展之中,欧、美、日本、澳大利亚等国均有一些专业厂商生产。目前,经较成熟的常规项目有:水温、PH、溶解氧(DO)、电导率、浊度、氧化还原电位(ORP)、流速和水位等。常用的监测项目有:COD、高锰酸盐指数、TOC、氮、总氮、总磷。其他还有:氟化物、氯化物、盐、亚盐、物、盐、磷酸盐、活性氯、TOD、BOD、UV、油类、、叶绿素、金属离子(如六价铬)等。
目前的自动分析仪一般具有如下功能:自动量程转换,遥控、标准输出接口和数字显示,自动清洗(在清洗时具有数据锁定功能)、状态自检和报警功能(如:液体泄漏、管路堵塞、**出量程、仪器内部温度过高、试剂用尺、高/低浓度、断电等),干运转和断电保护,来电自动恢复,COD、氮、TOC、总磷、总氮等仪器具有自动标定校正功能。

3.2常规五参数分析仪
常规五参数分析仪经常采用流通式多传感器测量池结构,无零点漂移,*基线校正,具有一体化生物清洗及压缩空气清洗装置。如:英国ABB公司生产的EIL7976型多参数分析仪、法国Polymetron公司生产的常规五参数分析仪、澳大利亚GREENSPAN公司生产的Aqualab型多参数分析仪(包括常规五参数、氮、磷酸盐)。另一种类型(“4+1”型)常规五参数自动分析仪的代表是法国SERES公司生产的MP2000型多参数在线不质分析仪,其特点是仪器结构紧凑。 
常规五参数的测量原理分别为: 水温为温度传感器法(Platinum RTD)、PH为玻璃或锑电极法、DO为金-银膜电极法(Galvanic)、电导率为电极法(交流阻抗法)、浊度为光学法(透射原理或红外散射原理)。

3.3化学需氧量(COD)分析仪
COD在线自动分析仪的主要技术原理有六种:(1)消解-光度测量法;(2)消解-库仑滴定法;(3)消解-氧化还原滴定法;(4)UV计(254nm);(5)氢氧基及臭氧(混和氧化剂)氧化-电化学测量法;(6)臭氧氧化-电化学测量法。
从原理上讲,方法(3)更接近国标方法,方法(2)也是推荐的统一方法。方法(1)在快速COD测定仪器上已经采用。方法(5)和方法(6)虽然不属于国标或推荐方法,但鉴于其所具有的运行可*等特点,在实际应用中,只需将其分析结果与国标方法进行比对试验并进行适当的校正后,即可予以认可。但方法(4)用于表片水质COD,虽然在日本已得到较广泛的应用,但欧美各国尚未应用(未得到行政主客部门的认可),在我国尚需开展相关的研究。

从分析性能上讲,在线COD仪的测量范围一般在10(或30)~2000mg/l,因此,目前的在线COD仪仅能满足污染源在线自动监测的需要,难以应用于地表水的自动监测。另外,与采用电化学原理的仪器相比,采用消解-氧化还原滴定法、消解-光度法的仪器的分周期一般更长一些(10min~2h),前者一般为2~8min。
从仪器结构上讲, 采用电化学原理或UV计的在线COD仪的一般比采用消解-氧化还原滴定法、消解-光度法的仪器结构简单,并且由于前者的进样及试剂加入系统简便(泵、管更少),所以不仅在操作上更方便,而且其运行可靠性也更好。
从维护的难易程度上讲, 由于消解-氧化还原滴定法、消解-光度法所采用的试剂种类较多,泵管系统较复杂,因此在试剂的更换以及泵管的更换维护方面较烦琐,维护周期比采用电化学原理的仪器要短,维护工作量大。
从对环境的影响方面讲,消解-氧化还原滴定法(或光度法、或库仑滴定法)均有铬、的二次污染问题,废液需要特别的处理。而UV计法和电化学法(不包括库仑滴定法)则不存在此类问题。

3.4高锰酸盐指数分析仪 
高锰酸盐指数在线自动分析仪的主要技术原理有三种:(1)高锰酸盐氧化-化学测量法;(2)高锰酸盐氧化-电流/电位滴定法;(3)UV计法(与在线COD仪类似)。
从原理上讲,方法(1)和方法(2)并无本质的区别(只是终点指示方式的差异而已),在欧美和日本等国是法定方法,与我国的标准方法也是一致的。将方法(3)用于表征水质高锰酸盐指数的方法,在日本已得到较广泛的应用,但在我国尚未推广应用,也未得到行政主客部门的认可。
从分析性能上讲,目前的高锰酸盐指数在线自动分析仪已能够满足地表水在线自动监测的需要。另外,与彩和化学方法的仪器相比,采用氧化还原滴定法的仪器的分析周期一般更长一些(2h),前者一般为15~60min。
从仪器结构上讲,两种仪器的结构均比较复杂。

3.5总**碳(TOC)分析仪
TOC自动分析仪在欧美、日本和澳大利亚等国的应用较广泛,其主要技术原理有四种:(1)(催化)燃烧氧化-非分散红外光度法(NDIR法);(2)UV催化-过盐氧化-NDIR法;(3)UV-过盐氧化-离子选择电极法(ISE)法;(4)加热-过盐氧化-NDIR法;(5)UV-TOC分析计法。
从原理上讲,方示(1)更接近国标方法,但方法(2)~方法(4)在欧美等国也是法定方法。将方法(5)用于表征水质TOC,虽然在日本已得到较广泛的应用,但在欧美各国尚未得到行政主管部门的认可。

从分析性能上讲,目前的在线TOC仪完**够满足污染源在线自动监测的需要,并且由于其检测限较低,应用于地表水的自动监测也是可行的。另外,在线TOC仪的分析周期一般较短(3~10min)。
从仪器结构上讲,除了增加无机碳去除单元外,各类在线TOC仪的结构一般比在线COD仪简单一些。

3.6氮和总氮分析仪
氮在线自动分析仪的技术原理主要有三种:(1)气敏电极电位法(PH电极法);(2)分光光度法;(3)傅立叶变换光谱法。在线氮仪等需要连续和间断测量方式,在经过在线过滤装置后,水样测定值相对偏差较大。
        总氮在线自动分仪的主要技术原理有两种:(1)过盐消解-光度法;(2)密闭燃烧氧化-化学发光分析法。

3.7磷酸盐和总磷分析仪
(反应性)磷酸盐自动分析仪主要的技术原理为光度法。总磷在线自动分析仪的主要技术原理有:(1)过盐消解-光度法;(2)紫外线照射-钼催化加热消解,FLA-光度法。
从原理上讲,过盐消解-光度法是在线总氮和总磷仪的主选方法,也是各国的法定方法。基于密闭燃烧氧化-化学发光分析法的在线总氮仪以及基于紫外线照射-钼催化加热消解,FIA-光度法的在线总磷仪主要局限于日本。前者是日本工业规格协会(JIS)认可的方法之一。
从分析性能上讲,目前的在线总氮、总磷仪已能满足污染源和地表水自动监测的需要,但灵敏度尚难以满足评价一类、二类地表水(标准值分别为0.04mg/l和0.02mg/l)水质的需要。另外,采用化学发光法、FIA-光度法的仪器的分析周期一般更短一些(10~30min),前者一般为30~60min。
从仪器结构上讲,采用化不发光法或FIA-光度法的在线总氮、总磷仪的结构更简单一些。

3.8其他在线分析仪器
TOD自动分析仪:技术原理一般为燃烧氧化-电极法。
油类自动分析仪:技术原理一般为荧光光度法。
类自动分析仪:技术原理一般为比色法。
UV自动分析仪:技术原理为比色法(254nm)。具有简单、快捷、价格低的特点。不适于地表水的自动在线监测,国外一般是用于污染源的自动监测,并经常经换算表示成COD、TOC值。应用的前提条件是水质较稳定,在UV吸收信号与COD或TOC值之间有较确定的线性相关关系。
盐和物自动分析仪:技术原理主要有:(1)离子选择电极法;(2)光度法。
氟化物和氯化物自动分析仪:技术原理一般为离子选择电极法。

202207281244519172844.jpg202202231632200382714.jpg


 为使火力发电厂的发电机组的可靠性达到更高水平,特别是满足大型骨干火力发电厂“无人值班”(少人值守)对监控系统的要求控制工程网版权所有,机组现地控制单元(LCU)应有较高的冗余度。基于此,本文设计了一种基于西门子s7—400系列可编程逻辑控制器(PLC)的机组LCU双冗余控制。控制器的冗余是计算机监控系统现地控制的一大优点,根据各控制系统和设计方案的不同,控制器的冗余主要有以下方式:
    (1)1:1冗余方式:即用2个完全相同的控制器,其中一个作为主控制器承担全部监视控制任务,另一个备用。在主控制器故障情况下www.,无须人工干预即可自动切换至备用控制器工作,使整个系统不会发生停滞。
    (2)N+I冗余方式:在一个计算机监控系统中,包含N+1个控制器,其中N个为主控制器,1个为备用控制器。不论N个主控制器中哪一个出现故障,均能立即切换到备用控制器,使故障的主控制器自动退出并发出报警信号。
    (3)制系统的冗余方式:把重要控制回路的软件组态分别存放在2个完全独立的控制系统中,每个控制器的CPU可接管其他系统的i/o信号。制系统互为冗余方式,使得每个重要的控制对象都有2个互为冗余的控制系统进行控制,大大提高了系统的可靠性。
    上述3种方式中,方式1成本较高,方式2要求备用控制器能满足所有主控制器的要求,方式3成本较低。本文以方式3说明LCU的冗余设计。

    一 LCU的冗余结构
    双机热备的实现包括硬件方式和软件方式。硬件方式如西门子S 7—417H系列、旖耐德公司Ouantum系列、通用电气公司GE90—70系列可实现双机热备等:软件方式如西门子s7—3152DP以上系列PLC、通用电气公司GE90—30系列PLC等。不管哪种方式,都要保证切换过程中控制连续进行、数据不丢失,这一点非常重要。本设计中采用了西门子s7 412系列PLC软件双机热备结构。当1号机LCU主控CPU故障或电源失去时,2号机主控CPU自动接管l号机LCU分布式远程I/O模块,从而大大提高了监控系统的可靠性。
    LCU交换数据的设备通过PROFIBUS总线桥连接到LCU的PROFIBUS总线上,2台机组LCU采用西门子s7—412作为CPU模块,一个IMl53分布式远程i/o接口模块连接本机LCU的PLC—cPU的DP模块,另一个IMl53分布式远程I/O接口模块连接相邻机组LCU的PLC—CPU的DP模块,通过PROFIBUS总线构成制器冗余结构。
    LCU与监控系统上位机采用光纤以太网方式连接,虽然单网的可靠性已经很高,但考虑到其他不可预见的因素,本系统采用双光纤以太网。从LCU(PLC)而言,它的双光纤以太网工作方式不需要切换,而且是同时工作的方式,一旦1号网故障,2号网可以零时间切换过去控制工程网版权所有,从而获得很高的性能。这由PLC的以太网模块来实现。

    二 PLC系统软件冗余的说明与实现
    为实现LCU的冗余,PLC冗余系统需包括:
    (1)1套STEP7编程软件(V5.X)加软冗余软件包(V1.x):
    (2)2套PLC及I/0模块,可以是s7—300或s7—400系统:
    (3)3条通信链路,即主系统与从站通信链路(PROFIBUS 1)、备用系统与从站通信链路(PROFIBUS 2)、主系统与备用系统的数据同步通信链路(MPI,PROFIBUS或以太网):
    (4)若干个ET200从站,每个从站包括2个IMl53—2接口模块和若干个I/0模块:
    电缆、PROFIBUS总线链接器等。
    系统由2套独立的s7—412PLC系统组成www.,实现以下功能:主机架电源、背板总线等冗余:PLC处理器冗余:PROFIBUS现场总线网络冗余(包括通信接口、总线接头、总线电缆的冗余):ET200从站的通信接口模块IMl53—2冗余。
    软冗余系统由A和B这2套PLC控制系统组成。开始时,A系统为主,B系统备用:当主系统A中的任何一个组件出错,控制任务会自动切换到备用系统B中执行,这时,B系统为主,A系统备用。这种切换过程是包括电源、CPU、通信电缆和IMl53接口模块的整体切换。系统运行过程中,即使没有任何组件出错,操作人员也可以通过设定控制字,实现手动的主、备系统切换,这对于控制系统的软硬件调整、更换和扩容非常有用。

        三 冗余系统的工作原理
        在软冗余系统工作时,A、B控制系统(处理器、通信、I/o)独立运行,由主系统的PLC掌握对ET200从站中I/O的控制权。A、B系统中的PLC程序由非冗余用户程序段和冗余用户程序段组成,主系统PLC执行全部用户程序,备用系统PLC只执行非冗余用户程序段,跳过冗余用户程序段。其中主系统的CPU将数据同步到备用系统的CPU需要几个程序扫描循环。
    数据同步所需要的时间取决于同步数据量的大小和同步所采用的网络方式,MPI方式周期较长,PROFIBUS方式适中,以太网方式较快。本文设计中采用以太网同步方式,PLC需要在初始化程序中定义冗余部分的数据区,该数据区可以包括:一个过程映像区、一个定时器区、一个计数器区、一个位地址区和‘个数据块区。s7—412PLC同步的较大数据量为64kB。若主系统出现故障,则主系统向备用系统的切换时间为:故障检测诊断时间+同步时间+DP从站切换时间。如果CPU发生停机或断电故障,则故障诊断时间约为lOOms~500ins,s7—412PLc同步lkB数据所需时间约为200ms~300ms,8个DP从站的切换时间约为lOOms。无论控制程序循环扫描到哪里,当前的系统(即主系统)会随时接收并处理报警,而主系统A与备用系统B切换过程中产生的报警信息存在被丢失的可能。

    四 电源冗余
    电源是计算机监控系统的关键部分,通常包括主机及网络电源、LCU控制器电源和I/o模块工作电源。这些电源主要对监控系统设备、各控制模块、I/0模块和现场设备(如变送器、信号反馈、控制操作等)供电,一旦发生故障,会使整个控制系统瘫痪,造成重大损失。所以,在监控系统设计时,不仅要慎重考虑每个电源的容量,使其具有一定的裕度,而且要考虑各个电源单元的可靠性。为此,在LCU各个部分均采用双回路冗余电源供电方式CONTROL ENGINEERING China版权所有,部分环节还采用了双路电源自动切换回路,以保证系统电源正常工作。
    计算机监控系统LCU的冗余方式是多种多样的,可选择的硬件设备也较多,这给系统设计带来了许多方便和选择余地。本文介绍了一种火力发电厂计算机监控系统LCU的冗余实现方式,可以大大提高系统运行的可靠性。系统设计时,一定要根据生产过程和控制对象的实际情况,在保系统应有的可靠性的前提下,充分合理地考虑系统的性价比,选取合适的冗余方式和硬件产品。



http://zhangqueena.b2b168.com

产品推荐