• 西门子模块6ES7232-0HB22-0XA8量大从优
  • 西门子模块6ES7232-0HB22-0XA8量大从优
  • 西门子模块6ES7232-0HB22-0XA8量大从优

产品描述

产品规格模块式包装说明全新品牌西门子

西门子模块6ES7232-0HB22-0XA8量大从优

近年来随着纺织机械、机电一体化技术水平的不断提高和纺织的特点,对纺织品的要求不断更新,基于诸多的原因,对设备提出了较高的要求,所以采用交流变频调速器改造是一种必然趋势。在大多数新开发的纺织机械产品中几乎无一例外地应用了交流异步电动机变频调速装置。
上海山宇()变频器针对纺织行业的要求,现已经广泛应用在印染机械.浆纱机.涂胶机.感光机.光电整纬机.抽纱机.粗纱机等纺织机械.低速转距大,带有摆频功能,电极噪音小,受到广大纺织行业客户的一直**。
一、交流变频调速的特点
1、减少功耗降
纺织厂离不开空调设备。当空调电机使用变频调速器控制后,降低了功耗,大大节省了用电支出。普传公司对其中一个客户使用情况进行了测试,全年12台空调机可节电24余万元,空调用电单耗平均下降了6、7个百分点。
2、简化了机构、提高了性能
通过PLC可编程序控制器或工控机的控制,再经变频调速器实现多电机的同步协调运转。根据生产工艺曲线控制各机构的运动,进而简化了机构。比如粗纱机利用交流变频调速,去掉了锥轮变速机构,从而克服了锥轮变速皮带打滑变速不准的问题。
而对于细纱机来说,由于利用变频调速器去掉了成形机构中的成形凸轮,进而克服了由于成形凸轮所造成的桃底有停顿、桃**有冲击的现象。使得细纱卷形状良好。以便于下一道工序的高速退绕。同时利用变频调速器控制三十九主电机的变速来控制锭子的转数,使得细纱在大中小纱时转速在变化,以减少纱的断头率。
二、交流变频技术的应用
变频器控制的纺织机械涉及的交流电机主要分为两类。一类就是常用的Y系列的交流异步电机。这种电机主要应用于调速精度要求不高、调速范围不大的纺机上。而另一类为交流变频调速**异步电机。主要用语调速精度要求高、调速范围大的机器上。
下面介绍一下不同形式的变频器。
1、用变频器开环控制异步电机调速称为V/F形式。这种方式电路简单、可靠。但调速范围在10:1范围以内,调速精度较低2%~5%,并且低速性能不理想。因此多用于针织机或要求不高的纺织机械上。
2、采用无速度传感器矢量控制变频器。其有优良的低速特性。电路结构简单,可靠性高。同时还具有较好的加减特性、转矩特性以及电流限制特性等。调速精度可达0.5%~1.0%。调速范围在20:1范围以内。较适合印染机械的调速等。
3、采用带速度反馈的矢量变频控制异步电机,闭环变频调速,又称交流伺服电机。调速范围可达100:1。为了提高变频器开关频率,应用功率绝缘栅双较型晶体管(IGBT)取代一般的大功率管(GTR)。可实现响应、高精度、智能化。适用于调速要求较高且恒张力、恒线速的分条整经机、浆纱机、热定型机以及化纤长丝纺纱设备等。
三、变频调速器在纺织中的应用实例
变频调速器应用于纺纱机械中,可以说几乎各个工序的机械上都应用了。包括开清棉机、梳棉机、条卷机、精梳机、并条机以及粗纱机、细纱机和洛简机等。对于织造机械则有浆纱机、整经机等。另外针织机、无纺布、化纤机械、印染机械上也大量适用了交流变频调速器。下面重点介绍一下粗纱机机浆纱机。
1、FA491高速悬粗纱机
此种为我国近年来开发出的新型粗纱机。采用工控机、PLC及变频器控制4台电机,分别转动锭翼、罗拉、简管及龙筋升降,去掉了锥轮变速装置、成型装置等,简化了机构。效、可靠性高,低噪音,便于操作及维护保养。工艺适应性好,减少断头。较高速可达标1500rpm,实现了人机对话、停车翼自动定位等新技术。是一种高水平的粗纱机。
2、GA308型浆纱机
本浆纱机为交流分布传动。其中上浆槽、下浆槽及烘筒为交流变频电机传动,而织轴及拖引辊为交流伺服变频电机单独传动。共适用了5台变频器、2台伺服控制器以及压力、温度、回潮率等传感器。由工控机和可编程序控制器PLC控制。构成了一分布控制系统。其中PLC用来整机的动作以及回潮率、烘房及浆槽的温度及压浆辊压力等参数控制。整机受工控机的控制。此机控制精度高,性能稳定,故障率低。是一种高质量、高水平的设备。
四、对变频调速器在纺织种的应用展望
我国纺织业国际化迈进的进程正在加快。但与国际水平比还有很大的差距,为了缩小差距,我们应在纺织机械的机电一体化的水平上不断提高,把交流变频技术更好地应用于纺织机械的控制之中,要不断开发有我国自主知识产权的高质量、高水平的变频器以及交流伺服电机控制器,积极推广智能化技术、现场总线技术,实现网络控制,通过数显仪表及触摸屏实现人机对话

   与DCS控制系统各自在离散和过程行业风骚。然而,随着自动化技术的进步,尤其是自动化系统通信技术的飞越式发展,两者正在呈现融合与集成的趋势。这篇来自ARC咨询集团的专业报告对这一热点加以了较为全面的探讨。

离散控制系统(DCS)在过程控制行业中占有支配的地位,而可编程逻辑控制器(PLC) 在离散制造行业中占有统治的地位。在过程控制行业中,过程控制的功能基本上通过采用专有的离散控制系统(DCS)来进行调节控制,而其停止运行的功能寻址则由可编程逻辑控制器(PLC)完成。本文将对DCS与PLC系统的集成应用前景进行探讨。过提控制行业和DCS轰统炼油厂、化工厂、发电厂、造纸厂和金属冶炼厂等一类过程控制行业,总是离不开采用DCS作为过程中的控制系统。其主要的一类控制功能特性,例如:控制器、历史状态、显示、现场输出数据等都是 “分布式”的。包括处理器、v0卡分布、通路和现场连接装置(用于执行命令)在内的分布DCS系统流程图可保证灵活地添加、修正或取消控制点的连接。在某种意义上来说,它们能起到隔离的作用,不致使系统上某单部件的故障影响到其他部件的功能。例如,一个控制闭环的故障不致影响到其他相连闭环回路的功能特性。其工作性能和可靠性确立了DCS系统在过程控制行业中的应用地位。 字串6

离散行业和PLC

PLC是来源于离散行业中的应用。PLC不同于典型的DCS系统选项的地方主要在于,它与控制一个系统的逻辑程序有关。PLC采用物理装置代替硬连线逻辑,并借助于处理器来阅读所有的输入值,并执行程序,向编程状态发出输出指令。这一切都是在重复的扫描过程中完成的,每次扫描约持续几毫秒的时间。一般来说,像汽车和建筑自动化、电子和半导体、机械和运输等一类的离散行业传统上都采用PLC可编程逻辑控制器。

DCS和PLC的共同功能特牲

典型的DCS系统除了能起到控制功能以外,还可将其顺序控制的功能特性,应用于逻辑编程之中。在过程控制功能中发挥作用的同一个处理器也能用于逻辑控制。在连续的过程生产工厂中,逻辑控制和工艺控制是要求互相分离的。这也正是典型的PLC可以获得接受的地方(与DCS系统一起使用)。对于逻辑应用而言,采用DCS系统的方案相对要比采用PLC可编程逻辑控制器更昂贵些。何况,过程的安全停产需要采用一种能独立于过程控制系统的**系统。一个时期以来,在连续过程控制行业的生产中,DCS系统变成了过程控制的同义词,而PLC的功能特性则适合于停工时使用。其中,DCS系统和PLC系统分别用于过程控制和逻辑功能特性,PLC接收来自DCS系统的数据(连续的输人数据)以及来自于现场的数字和模拟输人数据。


PLC驱动现场各装置的情况(工厂过程中的一部分)纯粹是响应其接收的来自现场的硬接线输入数据,其反应动作完全独立于DCS系统的控制动作。由于PLC接收来自DCS系统的连续输人数据,因此PLC起到了一个数据汇集系统的作用。

3C功能通用的硬件、综合性的技术、加强的通信功能

DCS和PLC系统的处理器始终在不断更新换代,与其所鼓吹的强大处理功能保持同步。与这两者控制器连接的I/O卡也有很强大的处理器。工厂在控制器和I/O板上同时安设模拟和数字信号处理功能是完全符合逻辑的,这是一个它们可以共同发挥作用的地方,两者既“统一”但又“相互独立”。在某些情况下,这一目标已经实现。在较近一届的德国汉诺威博览会上,Yokogawa,ABB、西门子等一类生产厂越来越多地展示了这些产品。DCS和PLC系统的控制器都具有相类似的功能特性,但从应用来看则又是不同的。

在过程生产工厂中,PLC的安全性是安全自动化仪表系统(SIS)运行中的一个主要因素。诸如IEC 61508, IEC 71511和ISA SP85一类的标准事实上已经代替了T它V认证机构所采用的DIN 19250标准。这涉及到对整个自动化仪表系统的认证,而不光是逻辑控制器部分。整体安全水平(SII,)的认证关系到额外的成本,因此,这使得企业用户会尽量设法去降低开发费用,尽t选用较佳的“通用”硬件。对于用户来说,这样做的结果就是节省每一处系统访问的费用。


ARC咨询集团已经注意到了现场总线基金会(Fieldbu: Foundation, FF)和Proftbus国际用户组织Profibus Nutzer -organisation,PNO )将安全应用放在**的位置上。FF已将其安全自动化仪表系统(FF-SIS )提交TVV认机构审批,并希望该系统能够在2005年底以前到位。 PNO组织在安全规范方面也做了类似的努力,较近也送交TiJV认机构审批,以便使工厂的产品能够在相同的时间内发货。这些规范的要点就是要求享用共同的平台、公用的网络以及与DCS系统共享软件工具。但PLC系统仍然保留其停工关闭时的功能识别特性,同时,还要保证可以避免的停产时间。

制造企业倾向于采用一种公用的平台解决方案,以代替不同系统单元连接和各自拥有的总线。DCS和PLC系统的工程功能始终处于分离的位置,并根据不同的访问控制模式进行必要的改变,这主要是因为一直受到传统的系统总线概念的影响。可以通过以太网设备那样的通用通信平台,从而采用单一的工程工作站来配置DCS和PLC系统,这样也可使公用报警和事故监控系统安装在单一的位置上,以避免租用昂贵的第三方设备来完成源自DCS和PLC两大系统的数据流汇总。通用工程工作站概念有利于公认的标准编程语言(I E C 61134)成为主流语言。PLC与DCS这两种系统在配置的方式上(例如在功能块方面)有许多共同的特点,这为培训人员降低费用方面铺平了道路。事实上,DCS和PLC系统的操作员通用工作站正在不断地得视。至今为止,DCS和PLC系统之间的传统串行接口—Modbus RTU 协议接口继续延长向PLC开放,以便从DCS系统提取数据后做进一步处理。在大部分情况下,PLC将能够从DCS系统进行“阅读”,但不用于作为对DCS 系统的“写入”。这是因为除了数据的传输速度之外,当数据从PLC写入DCS系统时,通信数据的丢失也可能会影响过程的控制功能。PLC和DCS系统之间的接口通常通过一个位于DCS系统终端的附加“网关”硬件来完成。较新的发展趋势是将DCS和PLC系统建立在像以太网那样的公用平台上,并使用 TCP/IP协议进行数据交换。这样,不但可省去DCS系统终端的附加硬件,而且还可以保以更高的速度来传输系统之间的数据,并将这些数据更可靠地建立在系统之中。我们可以想象,具有共同功能特性、应用于不同场合的DCS系统和PLC设置到同一“底板”上,更大地发挥两大系统相互之间的潜力。

202207281244519172844.jpg202202231632200382714.jpg

虽然PLC具有很高的可靠性,并且有很强的抗干扰能力,但在过于恶劣的环境或安装使用不当等情况下,都有可能引起PLC内部信息的破坏而导致控制混乱,甚至造成内部元件损坏。为了提高PLC系统运行的可靠性,使用时应注意以下几个方面的问题。

一、适合的工作环境
1.环境温度适宜
各生产厂家对PLC的环境温度都有一定的规定。通常PLC允许的环境温度约在0~55°C。因此,安装时不要把发热量大的元件放在PLC的下方;PLC四周要有足够的通风散热空间;不要把PLC安装在阳光直接照射或离暖气、加热器、大功率电源等发热器件很近的场所;安装PLC的控制柜较好有通风的百叶窗,如果控制柜温度太高,应该在柜内安装风扇强迫通风。
2.环境湿度适宜
PLC工作环境的空气相对湿度一般要求小于85%,以保证PLC的绝缘性能。湿度太大也会影响模拟量输入/输出装置的精度。因此,不能将PLC安装在结露、雨淋的场所。

3.注意环境污染
不宜把PLC安装在有大量污染物(如灰尘、油烟、铁粉等)、腐烛性气体和可燃性气体的场所,尤其是有腐蚀性气体的地方,易造成元件及印刷线路板的腐蚀。如果只能安装在这种场所,在温度允许的条件下,可以将PLC封闭;或将PLC安装在密闭性较高的控制室内,并安装空气净化装置。
4.远离振动和冲击源
安装PLC的控制柜应当远离有强烈振动和冲击场所,尤其是连续、频繁的振动。必要时可以采取相应措施来减轻振动和冲击的影响,以免造成接线或插件的松动。
5.远离强干扰源
PLC应远离强干扰源,如大功率晶闸管装置、高频设备和大型动力设备等,同时PLC还应该远离强电磁场和强放射源,以及易产生强静电的地方。  

二、合理的安装与布线
   1. 注意电源安装

   电源是干扰进入PLC的主要途径。PLC系统的电源有两类:外部电源和内部电源。

   外部电源是用来驱动PLC输出设备(负载)和提供输入信号的,又称用户电源,同一台PLC的外部电源可能有多规格。外部电源的容量与性能由输出设备和PLC的输入电路决定。由于PLC的I/O电路都具有滤波、隔离功能,所以外部电源对PLC性能影响不大。因此,对外部电源的要求不高。

   内部电源是PLC的工作电源,即PLC内部电路的工作电源。它的性能好坏直接影响到PLC的可靠性。因此,为了保证PLC的正常工作,对内部电源有较高的要求。一般PLC的内部电源都采用开关式稳压电源或原边带低通滤波器的稳压电源。

   在干扰较强或可靠性要求较高的场合,应该用带屏蔽层的隔离变压器,对PLC系统供电。还可以在隔离变压器二次侧串接LC滤波电路。同时,在安装时还应注意以下问题:

   1) 隔离变压器与PLC和I/O电源之间较好采用双绞线连接,以控制串模干扰;

    2) 系统的动力线应足够粗,以降低大容量设备起动时引起的线路压降;

3) PLC输入电路用外接直流电源时,较好采用稳压电源,以保证正确的输入信号。否则可能使PLC接收到错误的信号。

2. 远离高压

PLC不能在高压电器和高压电源线附近安装,更不能与高压电器安装在同一个控制柜内。在柜内PLC应远离高压电源线,二者间距离应大于200mm。
3. 合理的布线

   1) I/O线、动力线及其它控制线应分开走线,尽量不要在同*槽中布线。

   2) 交流线与直流线、输入线与输出线较好分开走线。

   3) 开关量与模拟量的I/O线较好分开走线,对于传送模拟量信号的I/O线较好用屏蔽线,且屏蔽线的屏敝层应一端接地。

4) PLC的基本单元与扩展单元之间电缆传送的信号小、频,很容易受干扰,不能与其它的连线敷埋在同*槽内。
5)PLC的I/O回路配线,必须使用压接端子或单股线,不宜用多股绞合线直接与PLC的接线端于连接,否则容易出现火花。
 6) 与PLC安装在同一控制柜内,虽不是由PLC控制的感性元件,也应并联RC或二极管消弧电路。
三、正确的接地
  良好的接地是PLC运行的重要条件。为了抑制干扰,PLC一般较好单独接地,与其它设备分别使用各自的接地装置,如图6-37a所示;也可以采用公共接地,如图6-37b所示;但禁止使用如图6-37c所示的串联接地方式,因为这种接地方式会产生PLC与设备之间的电位差。)分别接地   b)公共按地   c)串联接地

PLC的接地线应尽量短,使接地点尽量靠近PLC。同时,接地电阻要小于100Ω,接地线的截面应大于2mm2。
另外,PLC的CPU单元必须接地,若使用了I/O扩展单元等,则CPU单元应与它们具有共同的接地体,而且从任一单元的保护接地端到地的电阻都不能大于100Ω。
四、必须的安全保护环节
   1.短路保护

当PLC输出设备短路时,为了避免PLC内部输出元件损坏,应该在PLC外部输出回路中装上熔断器,进行短路保护。较好在每个负载的回路中都装上熔断器。
    2. 互锁与联锁措施
    除在程序中保证电路的互锁关系,PLC外部接线中还应该采取硬件的互锁措施,以确保系统地运行,如电动机正、反转控制,要利用接触器KM1、KM2常闭触点在PLC外部进行互锁。在不同电机或电器之间有联锁要求时,较好也在PLC外部进行硬件联锁。采用PLC外部的硬件进行互锁与联锁,这是PLC控制系统中常用的做法。
    3.失压保护与紧急停车措施
PLC外部负载的供电线路应具有失压保护措施,当临时停电再恢复供电时,不按下“启动”按钮PLC的外部负载就不能自行启动。这种接线方法的另一个作用是,当特殊情况下需要紧急停机时,按下“停止”按钮就可以切断负载电源,而与PLC毫无关系。
五、必要的软件措施
    有时硬件措施不一定完全干扰的影响,采用一定的软件措施加以配合,对提高PLC控制系统的抗干扰能力和可靠性起到很好的作用。

1. 开关量输入信号抖动

 在实际应用中,有些开关输入信号接通时,由于外界的干扰而出现时通时断的“抖动”现象。这种现象在继电器系统中由于继电器的电磁惯性一般不会造成什么影响,但在PLC系统中,由于PLC扫描工作的速度快,扫描周期比实际继电器的动作时间短得多,所以抖动信号就可能被PLC检测到,从而造成错误的结果。因此,必须对某些“抖动”信号进行处理,以保证系统正常工作。

 如图6-38a所示,输入X0抖动会引起输出Y0发生抖动,可采用计数器或定时器,经过适当编程,以这种干扰。

如图6-38b所示为输入信号抖动的梯形图程序。当抖动干扰X0断开时间间隔Δt<K×0.1S,计数器C0不会动作,输出继电器Y0保持接通,干扰不会影响正常工作;只有当X0抖动断开时间Δt≥K×0.1S时,计数器C0计满K次动作,C0常闭断开,输出继电器Y0才断开。K为计数常数,实际调试时可根据干扰情况而定。



图6-38 输入信号抖动的影响及

    a)抖动现象的影响     b)抖动的方法
    2.故障的检测与诊断
    PLC的可靠性很高且本身有很完善的自诊断功能,如果PLC出现故障,借助自诊断程序可以方便地找到故障的原因,排除后就可以恢复正常工作。
    大量的工程实践表明,PLC外部输入、输出设备的故障率远远**PLC本身的故障率,而这些设备出现故障后,PLC一般不能觉察出来,可能使故障扩大,直至强电保护装置动作后才停机,有时甚至会造成设备和人身事故。停机后,查找故障也要花费很多时间。为了及时发现故障,在没有酿成事故之前使PLC自动停机和报警,也为了方便查找故障,提高维修效率,可用PLC程序实现故障的自诊断和自处理。
    现代的PLC拥有大量的软件资源,如FX2N系列PLC有几千点辅助继电器、几百点定时器和计数器,有相当大的裕量,可以把这些资源利用起来,用于故障检测。
    (1)**时检测  机械设备在各工步的动作所需的时间一般是不变的,即使变化也不会太大,因此可以以这些时间为参考,在PLC发出输出信号,相应的外部执行机构开始动作时启动一个定时器定时,定时器的设定值比正常情况下该动作的持续时间长20%左右。例如设某执行机构(如电动机)在正常情况下运行50s后,它驱动的部件使限位开关动作,发出动作结束信号。若该执行机构的动作时间**过 60s(即对应定时器的设定时间),PLC还没有接收到动作结束信号,定时器延时接通的常开触点发出故障信号,该信号停止正常的循环程序,启动报警和故障显示程序,使操作人员和维修人员能迅速判别故障的种类,及时采取排除故障的措施。
    (2)逻辑错误检测  在系统正常运行时,PLC的输入、输出信号和内部的信号(如辅助继电器的状态)相互之间存在着确定的关系,如出现异常的逻辑信号,则说明出现了故障。因此,可以编制一些常见故障的异常逻辑关系,一旦异常逻辑关系为ON状态,就应按故障处理。例如某机械运动过程中先后有两个限位开关动作,这两个信号不会同时为ON状态,若它们同时为ON,说明至少有一个限位开关被卡死,应停机进行处理。
3.预知干扰
某些干扰是可以预知的,如PLC的输出命令使执行机构(如大功率电动机、电磁铁)动作,常常会伴随产生火花、电弧等干扰信号,它们产生的干扰信号可能使PLC接收错误的信息。在容易产生这些干扰的时间内,可用软件PLC的某些输入信号,在干扰易发期过去后,再取消封锁。
六、采用冗余系统或热备用系统
某些控制系统(如化工、造纸、冶金、核电站等)要求有较高的可靠性,如果控制系统出现故障,由此引起停产或设备损坏将造成较大的经济损失。因此,仅仅通过提高PLC控制系统的自身可靠性是满足不了要求。在这种要求较高可靠性的大型系统中,常采用冗余系统或热备用系统来有效地解决上述问题。
1.冗余系统
所谓冗余系统是指系统中有多余的部分,没有它系统工作,但在系统出现故障时,这多余的部分能立即替代故障部分而使系统继续正常运行。冗余系统一般是在控制系统中较重要的部分(如CPU模块)由两套相同的硬件组成,当某一套出现故障立即由另一套来控制。是否使用两套相同的I/O模块,取决于系统对可靠性的要求程度。
如图6-39a所示,两套CPU模块使用相同的程序并行工作,其中一套为主CPU模块,一块为备用CPU模块。在系统正常运行时,备用CPU模块的输出被禁止,由主CPU模块来控制系统的工作。同时,主CPU模块还不断通过冗余处理单元(RPU)同步地对备用CPU模块的I/O映像寄存器和其它寄存器进行刷新。当主CPU模块发出故障信息后,RPU在1~3个扫描周期内将控制功能切换到备用CPU。I/O系统的切换也是由RPU来完成。
 



http://zhangqueena.b2b168.com

产品推荐