• 西门子6ES7211-0BA23-0XB0支持验货
  • 西门子6ES7211-0BA23-0XB0支持验货
  • 西门子6ES7211-0BA23-0XB0支持验货

产品描述

产品规格模块式包装说明全新品牌西门子

西门子6ES7211-0BA23-0XB0支持验货


PLC人机界面现场应用时的抗干扰问题,是复杂而细致的。抗干扰性设计是一个十分复杂的系统性工程,涉及到具体的输入输出设备和工业现场的具体环境,要求我们要综合考虑各方面的因素,必须根据现场的实际情况,从减少干扰源、切断干扰途径等方面进行全面的考虑,充分利用各种抗干扰措施来进行可编程控制器、人机界面的设计。才能真正提高可编程控制器、人机界面HMI现场应用时的抗干扰能力,确保系统安全稳定运行。

1、采用性能优良的电源,抑制电网引入的干扰。

对于PLC控制器供电的电源,应采用非动力线路供电,直接从低压配电室的主母线上采用**线供电。选用隔离变压器,且变压器容量应比实际需要大1.2~1.5倍左右,还可在隔离变压器前加入滤波器。对于变送器和共用信号仪表供电应选择分布电容小、采用多次隔离和屏蔽及漏感技术的配电器。

控制器和I/O系统分别由各自的隔离变压器供电,并与主电路电源分开。PLC控制器的24V直流电源尽量不要给外围的各类传感器供电,以减少外围传感器内部或供电线路短路故障对PLC控制器的干扰。此外,为保证电网馈电不中断,可采用在线式不间断供电电源(UPS)供电,UPS具备过压、欠压保护功能、软件、与电网隔离等功能,可提高供电的性。对于一些重要的设备,交流供电电路可采用双路供电系统。

2、正确选择电缆的和实施敷设,可编程控制器、人机界面的空间辐射干扰。

不同类型的信号分别由不同电缆传输,采用远离技术,信号电缆按传输信号种类分层敷设,相同类型的信号线采用双绞方式。严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠行敷设,增大电缆之间的夹角,以减少电磁干扰。为了减少动力电缆尤其是变频装置馈电电缆的辐射电磁干扰,从干扰途径上阻隔干扰的侵入,要采用屏蔽电力电缆。

3、PLC控制器输入输出通道的抗干扰措施

输入模块的滤波可以降低输入信号的线间的差模干扰。为了降低输入信号与大地间的共模干扰,PLC控制器要良好接地。输入端有感性负载时,对于交流输入信号,可在负载两端并接电容和电阻,对于直流输入信号可并接续流二极管。为了抑制输入信号线间的寄生电容、与其他线间的寄生电容或耦合所产生的感应电动势,可采用RC浪涌吸收器。

输出为交流感性负载,可在负载两端并联RC浪涌吸收器;若为直流负载,可并联续流二极管,也要尽可能靠近负载。对于开关量输出的场合,可以采用浪涌吸收器或晶闸管输出模块。另外,采用输出点串接中间继电器或光电耦合措施,可防止PLC控制器输出点直接接入电气控制回路,在电气上完全隔离。

4、PLC控制器抗干扰的软件措施

由于电磁干扰的复杂性,仅采取硬件抗干扰措施是不够的,要用PLC控制器的软件抗干扰技术来加以配合,进一步提高系统的可靠性。采用数字滤波和工频整形采样、定时校正参考点电位等措施,有效周期性干扰、防止电位漂移。采用信息冗余技术,设计相应的软件标志位;采用间接跳转,设置软件保护等。例如对开关量输入信号,采用定时器延时的方式多次读入,结果一致再确认有效,提高了软件的可靠性。

5、正确选择接地点,完善接地系统。

良好的接地是保PLC控制器可靠工作的重要条件,可以避免偶然发生的电压冲击危害,还可以抑制干扰。完善的接地系统是PLC控制器抗电磁干扰的重要措施之一。

PLC控制器属高速低电平控制装置,应采用直接接地方式。为了抑制加在电源及输入端、输出端的干扰,应给PLC控制器接上**地线,接地点应与动力设备的接地点分开。若达不到这种要求,也必须做到与其他设备公共接地,禁止与其他设备串联接地。接地点应尽可能靠近PLC控制器。

集中布置的PLC控制器适于并联一点接地方式,各装置的柜体中心接地点以单独的接地线引向接地极。分散布置的PLC控制器,应采用串联一点接地方式。接地极的接地电阻小于2Ω,接地极较好埋在距建筑物10~15m远处,而且PLC控制器接地点必须与强电设备接地点相距10m以上。如果要用扩展单元,其接地点应与基本单元的接地点接在一起。

信号源接地时,屏蔽层应在信号侧接地;信号源不接地时,应在PLC控制器侧接地。信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,各屏蔽层应相互连接好。选择适当的接地处单点接地,要避免多点接地。

6、设备选型。

在选择设备时,首先要了解国产PLC生产厂家给出的抗干扰指标,如共模抑制比、差模抑制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作等,要选择有较高抗干扰能力的产品,如采用浮地技术、隔离性能好的可编程控制器、人机界面HMI


PLC人机界面现场进行具体工程的抗干扰设计时,要选择有较高抗干扰能力的产品,采取抑制干扰源、切断或衰减电磁干扰的传播途径和利用软件手段等措施,提高装置和系统的抗干扰能力。

1、采用性能优良的电源,抑制电网引入的干扰。

对于PLC控制器供电的电源,应采用非动力线路供电,直接从低压配电室的主母线上采用**线供电。选用隔离变压器,且变压器容量应比实际需要大1.2~1.5倍左右,还可在隔离变压器前加入滤波器。对于变送器和共用信号仪表供电应选择分布电容小、采用多次隔离和屏蔽及漏感技术的配电器。控制器和I/O系统分别由各自的隔离变压器供电,并与主电路电源分开。PLC控制器的24V直流电源尽量不要给外围的各类传感器供电,以减少外围传感器内部或供电线路短路故障对PLC控制器的干扰。此外,为保证电网馈电不中断,可采用在线式不间断供电电源(UPS)供电,UPS具备过压、欠压保护功能、软件、与电网隔离等功能,可提高供电的性。对于一些重要的设备,交流供电电路可采用双路供电系统。

2、正确选择电缆的和实施敷设,可编程控制器、人机界面的空间辐射干扰。

不同类型的信号分别由不同电缆传输,采用远离技术,信号电缆按传输信号种类分层敷设,相同类型的信号线采用双绞方式。严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠行敷设,增大电缆之间的夹角,以减少电磁干扰。为了减少动力电缆尤其是变频装置馈电电缆的辐射电磁干扰,从干扰途径上阻隔干扰的侵入,要采用屏蔽电力电缆。

3、PLC控制器输入输出通道的抗干扰措施

输入模块的滤波可以降低输入信号的线间的差模干扰。为了降低输入信号与大地间的共模干扰,PLC控制器要良好接地。输入端有感性负载时,对于交流输入信号,可在负载两端并接电容和电阻,对于直流输入信号可并接续流二极管。为了抑制输入信号线间的寄生电容、与其他线间的寄生电容或耦合所产生的感应电动势,可采用RC浪涌吸收器。

输出为交流感性负载,可在负载两端并联RC浪涌吸收器;若为直流负载,可并联续流二极管,也要尽可能靠近负载。对于开关量输出的场合,可以采用浪涌吸收器或晶闸管输出模块。另外,采用输出点串接中间继电器或光电耦合措施,可防止PLC控制器输出点直接接入电气控制回路,在电气上完全隔离。

4、PLC控制器抗干扰的软件措施

由于电磁干扰的复杂性,仅采取硬件抗干扰措施是不够的,要用PLC控制器的软件抗干扰技术来加以配合,进一步提高系统的可靠性。采用数字滤波和工频整形采样、定时校正参考点电位等措施,有效周期性干扰、防止电位漂移。采用信息冗余技术,设计相应的软件标志位;采用间接跳转,设置软件保护等。例如对开关量输入信号,采用定时器延时的方式多次读入,结果一致再确认有效,提高了软件的可靠性。

5、正确选择接地点,完善接地系统。

良好的接地是保PLC控制器可靠工作的重要条件,可以避免偶然发生的电压冲击危害,还可以抑制干扰。完善的接地系统是PLC控制器抗电磁干扰的重要措施之一。

PLC控制器属高速低电平控制装置,应采用直接接地方式。为了抑制加在电源及输入端、输出端的干扰,应给PLC控制器接上**地线,接地点应与动力设备的接地点分开。若达不到这种要求,也必须做到与其他设备公共接地,禁止与其他设备串联接地。接地点应尽可能靠近PLC控制器。集中布置的PLC控制器适于并联一点接地方式,各装置的柜体中心接地点以单独的接地线引向接地极。分散布置的PLC控制器,应采用串联一点接地方式。接地极的接地电阻小于2Ω,接地极较好埋在距建筑物10~15m远处,而且PLC控制器接地点必须与强电设备接地点相距10m以上。如果要用扩展单元,其接地点应与基本单元的接地点接在一起。

信号源接地时,屏蔽层应在信号侧接地;信号源不接地时,应在PLC控制器侧接地。信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,各屏蔽层应相互连接好。选择适当的接地处单点接地,要避免多点接地。

6、设备选型。

在选择设备时,首先要了解国产PLC生产厂家给出的抗干扰指标,如共模抑制比、差模抑制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作等,要选择有较高抗干扰能力的产品,如采用浮地技术、隔离性能好的可编程控制器、人机界面HMI。

可编程控制器、人机界面现场应用时的抗干扰问题,是复杂而细致的。抗干扰性设计是一个十分复杂的系统性工程,涉及到具体的输入输出设备和工业现场的具体环境,要求我们要综合考虑各方面的因素,必须根据现场的实际情况,从减少干扰源、切断干扰途径等方面进行全面的考虑,充分利用各种抗干扰措施来进行可编程控制器、人机界面的设计。才能真正提高可编程控制器、人机界面HMI现场应用时的抗干扰能力,确保系统安全稳定运行。

202202231632201798164.jpg202202231632210850864.jpg

对PLC用户程序的循环扫描执行过程,可分为输入采样、程序执行、输出刷新三个阶段。
1.输入采样阶段
在输入采样阶段,PLC以扫描方式将所有输入端的输入信号状态(ON/OFF状态)读入到输入映像寄存器中寄存起来,称为对输入信号的采样。接着转入程序执行阶段,在程序执行期间,即使输入状态变化,输入映像寄存器的内容也不会改变。输入状态的变化只能在下一个工作周期的输入采样阶段才被重新读入。
2.程序执行阶段
在程序执行阶段,PLC对程序按顺序进行扫描。如程序用梯形图表示,则总是按先上后下、先左后右的顺序扫描。每扫描到一条指令时所需要的输入状态或其他元素的状态,分别由输入映像寄存器或输出映像寄存器中读入,然后进行相应的逻辑或算术运算,运算结果再存入**寄存器。若执行程序输出指令时,则将相应的运算存入输出映像寄存器。
3.输出刷新阶段
在所有指令执行完毕后,输出映像寄存器中的状态就是欲输出的状态。在输出刷新阶段将其转存到输出锁存电路,再经输出端子输出信号去驱动用户输出设备,这就是PLC的实际输出。PLC重复地执行上述三个阶段,每重复一次就是一个工作周期(或称扫描周期)。工作周期的长短与程序的长短有关。
由于输入/输出模块滤波器的时间常数,输出继电器的机械滞后以及执行程序时按工作周期进行等原因,会使输入/输出响应出现滞后现象,对一般工业控制设备来说,这种滞后现象是允许的。但一些设备的某些信号要求做出快速响应,因此,有些PLC采用高速响应的输入/输出模块,也有的将顺序程序分为快速响应的高级程序和一般响应速度的低级程序两类。如FANUC-BESKPLC规定高级程序每8ms扫描一次,而把低级程序自动划分分割段,当开始执行程序时,首先执行高级顺序程序,然后执行低级程序的分割段1,然后又去执行高级程序,再执行低级程序的分割段2,这样每执行完低级程序的一个分割段,都要重新扫描执行一次高级程序,以保证高级程序中信号响应的快速性。 我们知道梯形图编程是PLC中使用较多的图形编程语言,是PLC应用的**编程语言。为什么梯形图会受到PLC开发人员的如此热捧呢,这主要是由于梯形图与电器控制系统的电路图很相似,具有直观易懂的优点,很容易被工厂电气人员掌握,特别适用于开关量逻辑控制。因此,梯形图常被称为电路或程序,梯形图的设计也称为编程。梯形图还具有以下几个重要特点:
  1)PLC梯形图中的某些编程元件沿用了继电器这一名称,如输入继电器、输出继电器、内部辅助继电器等,但是它们不是真实的物理继电器(即硬件继电器),而是在软件中使用的编程元件。每一编程元件与PLC存储器中元件映像寄存器的二个存储单元相对应。以辅助继电器为例,如果该存储单元为0状态,梯形图中对应的编程元件的线圈“断电”,其常开触点断开,常闭触点闭合,称该编程元件为0状态,或称该编程元件为OFF(断开)。该存储单元如果为1状态,对应编程元件的线圈“通电”,其常开触点接通,常闭触点断开,称该编程元件为l状态,或称该编程元件为ON(接通)。
    2)根据梯形图中各触点的状态和逻辑关系,求出与图中各线圈对应的编程元件的ON/OFF状态,称为梯形图的逻辑解算。逻辑解算是按梯形图中从上到下、从左至右的顺序进行的。解算的结果,马上可以被后面的逻辑解算所利用。逻辑解算是根据输入映像寄存器中的值,而不是根据解算瞬时外部输入触点的状态来进行的。
    3)梯形图中各编程元件的常开触点和常闭触点均可以无限多次地使用。
    4)输入继电器的状态一地取决于对应的外部输入电路的通断状态,因此在梯形图中不能出现输入继电器的线圈。随着生产企业规模的不断扩大及设备自动化程度的不断提高,我国机床产品逐渐向高端化靠拢。这些机床都需要使用大量PLC和运动控制器/卡来逐步取代继电器或机械控制,使得机床的整体性能得到提升,因此从长远来看,PLC和运动控制器/卡在的应用还是会很有潜力。
“机床行业在保持了近些年来的高速增长后,开始出现衰退现象,其中普通机床的影响尤为明显,库存开始增加,而数控机床的影响稍微少一些,从而给这个行业重新洗牌。而机床产品数控化高端化的发展带来巨大的plc和运动控制器/卡需求。”金模机床网**分析师罗百辉认为,未来机床的方向是数控化和逐步高端化,这些机床都需要使用大量plc和运动控制器/卡来逐步取代继电器或机械控制,使得机床的整体性能得到提升,从长远来看,plc和运动控制器/卡在机床行业的应用还是会很有潜力。
数控机床是集计算机技术、PLC技术、自动化技术等于一身的机、电一体化产物,作为数控机床核心的控制系统直接关系到设备的正常运行,利用数控机床PLC的强大功能,可以充分发挥数控机床控制系统的作用,还可以为数控机床故障诊断及维修带来大的方便。作者为加工中心设计的防止机床发生碰撞的安全控制功能,有效了因操作人员的失误导致机床主轴与夹具、工件发生碰撞的隐患,确保了生产的安全性,有良好的经济效益。
PLC为可编程控制器。在数控机床上所使用的PLC也称作PMC。它有以下优点:响应快。控制精度高,可靠性好,控制程序可随应用场合的不同而改变,与计算机的接口及维修方便。通常,数控机床上所使用的PLC程序包括系统程序和用户程序。其中系统程序包括监控程序、编译程序及诊断程序等,由PLC生产厂家提供,并固化在EPROM中,用户不能直接存取,也不需要用户干预。丽用户程序是用户根据现场控制的需要,用PLC程序语言编制的应用程序,用以实现各种控制要求。常用的PLC程序设计语言主要有梯形囝、语句表、功能块图等。
由于数控机床很多执行机构的动作都是通过PLC的控制指令来实现的,可以利用PLC对数控机床进行故障的检测和维修,或者是通过修改、编写PLC程序为数控机床增添某个可执行动作或功能。
机床行业中的PLC的应用以小型PLC为主,日系PLC在小型PLC领域占有很大优势,因此在机床中日系PLC占据大部分市场份额,而三菱PLC、西门子PLC和ge-fanuc由于其数控系统在机床中占有优势,因此在机床中占有一席之地。机床行业中PLC品牌集中度比较高,主要集中于日系品牌(三菱、欧姆龙PLC)和西门子,中国台湾品牌台达PLC在其中也占有一定的市场份额,而其他的品牌主要有富士、倍福、ls、施耐德、光洋、abb和横河等。




http://zhangqueena.b2b168.com

产品推荐