• 6ES7222-1EF22-0XA0千万库存
  • 6ES7222-1EF22-0XA0千万库存
  • 6ES7222-1EF22-0XA0千万库存

产品描述

产品规格模块式包装说明全新品牌西门子

6ES7222-1EF22-0XA0千万库存

一、前言 
 
    一家主要生产疫苗的制公司,由净化中央空调设备提供生产车间的洁净环境,使生产车间各个房间的温度、湿度和压差等均能达到国家GMP规定的要求。因为季节的变化,昼夜的变化,这样生产车间的各个房间对风量具有很明显的需求变化,而水泵风机的风量、水流量的调节是靠风门、节流阀的手动调节。当风量、水流量的需求减少时,风门、阀的开度减少;当风量、水的需求增加时,风门、阀的开度增大。这种调节方式虽然简单易行,已成习惯,但它是以增加管网损耗,耗费大量能源在风门、阀上作为代价的。而且该中央空调在正常工作时,大多数风门及阀的开度都在50%-60%,这说明现有中央空调水泵风机设计的容量要比实际需要高出很多,严重存在“大马拉小车”的现象,造成电能的大量浪费。近年来随着电力、电子技术、计算机技术的迅速发展,变频调速技术越来越成熟,因此我们对公司的中央空调水泵风机加装19台变频器进行了节能改造。又由于水泵风机分散性较大,为了减少值班人员的巡视工作强度,便于及时掌握水泵风机的工作状态和发现故障,我们通过PLC及人机界面与变频器的通讯应用,在*监控室增装变频监控系统,这样值班人员就可在人机界面上直接设定频率值与启停各台变频器,能实时监控水泵风机电机实际工作电流、电压、频率的大小,并具有报警等功能。

二、中央空调水泵风机变频改造方案

    1、改造前设备情况
    (1)、基因部空调设备情况
    ①制冷主机为日立机组,共三台。②冷冻泵:11KW,2极 全压启动4台,扬程30m,出水温度6℃,回水温度为10℃,出水压力为0.35Mpa,每台电机额定电流为21.8A,正常工作电流为16.6A。一般情况下,开二台备二台。③冷却泵:15KW,2极 全压启动 4台,扬程30m,出水温度32.5℃,回水温度为28.2℃,出水压力为0.38Mpa,每台电机额定电流为29.9A,正常工作电流为18.0A。一般情况下,开二台备二台。
    (2)、老二楼空调机房空调设备情况
    ①制冷主机为日立机组,共两台。②冷冻泵:15KW,2极 全压启动3台,扬程30m,出水温度6.1℃,回水温度为9.8℃,出水压力为0.36Mpa,每台电机额定电流为29.9A,正常工作电流为21A。一般情况下,开一台备二台。③冷却泵:15KW,2极 全压启动 3台,扬程30m,出水温度31.8℃,回水温度为27.7℃,出水压力为0.41Mpa,每台电机额定电流为29.9A,正常工作电流为20.6A。一般情况下,开一台备二台。
    (3)、分包装空调机房空调设备情况
    ①制冷主机为日立机组,共两台。②冷冻泵:15KW,2极 全压启动3台,扬程30m,出水温度5.8℃,回水温度为9.3℃,出水压力为0.38Mpa,每台电机额定电流为29.9A,正常工作电流为20.2A。一般情况下,开二台备一台。③冷却泵:15KW,2极 全压启动 3台,扬程30m,出水温度31.6℃,回水温度为27.3℃,出水压力为0.40Mpa,每台电机额定电流为29.9A,正常工作电流为21.2A。一般情况下,开二台备一台。
    (4)、公司共有13台空调风柜。
    ①基因部空调风柜7台,其中22KW风机电机3台,11KW风机电机2台,15KW和18.5KW风机电机各1台。②老二楼空调风柜3台,其中15KW风机电机2台,11KW风机电机1台。③质检部空调风柜3台,其中11KW风机电机2台,7.5KW风机电机1台。

    2、水泵变频改造方案
 因为冷冻泵和冷却泵进出水温差都小于5℃,这说明冷冻水流量和冷却水流量还有余量,再加之,电机正常工作电流小于额定电流(5-12A),明显存在“大马拉小车”的现象。因此,我们对基因部的冷冻水系统和冷却水系统各自使用一台台达VFD-P11KW变频器和一台台达VFD-P15KW 变频器分别实施一拖三驱动(如图一所示)。根据需要由PLC1分别控制3台冷冻水泵和3台冷却水泵轮流切换工作(但同一时刻一台变频器只能驱动一台水泵电机运转),使冷冻水量和冷却水量得到灵活、方便、适时、适量的自动控制,以满足生产工艺的需求。同样对老二楼空调机房及分包装空调机房的冷冻水系统和冷却水系统也各使用一台台达VFD-P15KW 变频器分别实施一拖三驱动,其控制方式与基因部的冷冻水系统和冷却水系统控制方式相同。下面以基因部冷冻水系统加以说明:
    (1)、闭环控制
    基因部冷冻水系统采用全闭环自动温差控制。采用一台11KW变频器实施一拖三。具体方法是:先将中央空调水泵系统所有的风阀门完全打开,在保证冷冻机组冷冻水量和压力所需前提下,确定一个冷冻泵变频器工作的较低工作频率(调试时确定为35HZ),将其设定为下限频率并锁定。用两支温度传感器采集冷冻水主管道上的出水温度和回水温度,传送两者的温差信号至温差控制器,通过PID2调节将温差量变为模拟量反馈给变频器,当温差小于等于设定值5℃时,冷冻水流量可适当减少,这时变频器VVVF2降频运行,电机转速减慢;当温差大于设定值5℃时,这时变频器VVVF2升频运行,电机转速加快,水增加。冷冻泵的工作台数和增减由PLC1控制。这样就能够根据系统实时需要,提供合适的流量,不会造成电能的浪费。
    (2)、开环控制
    将控制屏上的转换开关拨至开环位置,顺时针旋动电位器来改变冷冻水泵电机的转速快慢。
    (3)、工频/变频切换工作
 在系统自动工作状态下,当变频器发生故障时,由PLC1控制另一台备用水泵电机投入工频运行,同时发出声光报警,提醒值班人员及时发现和处理故障。也可将控制柜面板上的手动/自动转换开关拨至手动位置,按下相应的起动按钮来启动相应的水泵电机。 

    3、风机变频改造方案
 因为所有风柜的风机均处于全开、正常负荷运行状态,恒温调节时,是由冷风出风阀来调节风量。如果生产车间房间内的温度偏高,则风阀开大,加大冷风量,使生产车间房间内的温度降低。如果生产车间房间内的温度偏低,则需关闭一部分风阀开度,减少冷风量,来维持生产车间房间的冷热平衡。因此,送入生产车间内部的风量是可调节的、变化的。特别是到了夜班时,人员很少,且很少出入、走动等活动,系统负荷很轻,对空调冷量的要求也大大降低,只需少量的冷风量就能维持生产车间房间的正压与冷量的需求了,故对13台风机全部进行了变频节能改造,利用变频器来对风量进行调节。

    中央空调风机变频改造原理图如图二所示,在原有工频控制的基础上,增加7个变频控制柜,采用13台台达VFD-P系列变频器驱动13台风机电机,变频/工频可以相互切换。在工频方式下运行时,不改变原来的操作方式,在变频方式下运行时,变频器在不同的时间段自动输出不同的频率。即13台变频器受时控开关的程序控制,在周一至周五的7:30-23:00设定变频器在45HZ下运行,在周一至周五的23:00后至第二天的7:30及周六、周日设定变频器在35HZ下运行(其运行的频率可根据需要来设定),以改变风机的转速,同时13台变频器与*监控室的人机界面和PLC实行联机通讯,可以实现远程人机监控。  

三、中央空调水泵风机变频节能改造效果

    为了能直观体现变频改造后的节能效果,我们做了如下的测试:以1#日立机组冷却水泵14#(15KW)和K4风柜4#(22KW)为对象,在它们各自的主回路上加装电度表,先工频运行一星期,每天定时记录电表读数,再变频运行一星期,进行同样的工作,其数据如表1和表2所示。 

    1、表1的数据分析:在工频运行时,水泵的负荷变化不是很大,其日用电量在298度左右。变频运行时,由于受外界的环境温度影响较大,故每天的用电量差别较大,但可以看出,变频运行时的日用电量明显要小于工频时的数值。我们以一个星期的总用电量来计算,工频时为2580-891=1689,变频时为5248-4121=1127,则1#日立机组冷却水泵的节电率为:(1689-1127)/1689=33%

    2、表2的数据分析:由于风机每天的负荷变化不大,故其用电量比较稳定。可以看出,工频运行时日用电量在350度左右。变频运行时,日用电量在220度左右。以350和220来计算,则K4风柜电机的节电率为:(350-220)/350 = 37%

    由上述计算可知:水泵和风机变频改造后平均节能率为35%,在实际使用中,节电效果会更好。

四、中央空调水泵风机变频监控系统

    1、 系统硬件组成
 中央空调水泵风机变频监控系统的硬件结构图如图三所示,它由公司自来水恒压泵、分包装部二楼冷冻泵、质检部老二楼空调机房水泵风机和基因部水泵风机四个子系统组成,对分布在不同部门的19台变频器实施远程监控。各部分说明如下:①、变频器选用台达VFD-P系列变频器,该系列变频器具有高可靠性,低噪声,高节能,保护功能完善,内建功能强大的RS-485串行通讯接口,且RS-485串行通讯协议对用户公开等特点。②、PLC作为控制单元,是整个系统的控制核心,选用台达DVP24ES01R。利用其通讯指令编好程序,下载到PLC,然后将它与变频器的RS-485串行通讯接口相连接,就可实现与变频器的实时通讯。③、人机界面采用Hitech公司的PWS-3760,彩色10.4寸。它是新一代高科技可编程终端,专为PLC而设计的互动式工作站,具备与各品牌PLC连线监控能力,适于在恶劣的工业环境中应用,可代替普通或工控计算机。其主要特点有:画面容量大,可达255个画面,画面规划简单;使用ADP3全中文操作软件,适用于bbbbbbS95/bbbbbbS98环境,巨集指令丰富,编程简单;具有交互性好,抗干扰能力强,通讯可靠性高;自动化程度高,操作简单方便,故障率低,寿命长,维修量少。其主要功能有:设计者可依需要编辑出各种画面,实时显示设备状态或系统的操作指示信息;人机界面上的触摸按键可产生相应的开关信号,或输入数值、字符给PLC进行数据交换,从而产生相应的动作控制设备的运行;可多幅画面重叠或切换显示,显示文字、数字、图形、字符串、警报信息、动作流程、统计资料、历史记录、趋势图、简易报表等。④、RS-485串行通讯方式:RS-485采用平衡发送接收方式,它具有传输距离长、抗干扰能力强和多站能力的优点。 

    2、人机界面画面设计
 本系统人机界面所有画面均由ADP3全中文软件进行设计,有主画面、参数设定、运转设定、参数显示、状态信息、报警信息和帮助等画面,经ADP3软件编译无误后,从个人电脑中下载到人机界面即可使用。人机界面与PLC之间通过RS232通讯电缆以主从方式进行连接。由PLC对人机界面的状态控制区和通知区进行读写达到两者之间的信息交互。PLC读人机界面状态通知区中的数据,得到当前画面号,而通过写人机界面状态控制区的数据,强制切换画面。 
 
    用户需要监视19台水泵风机的电压、电流以及频率的大小。因此为它们分别设置三组数值显示区,分别显示电压、电流与频率值,这是利用元件中的数值显示功能实现的。系统启动后,19台变频器周期性地向PLC回复其工作状态,经PLC处理后送人机界面,这样人机界面就可以实时显示这三组数值。数值的格式、位数和精度等根据实际情况在数值显示的属性框中设置。

    3、系统控制方法
 本系统要求对分布在不同部门、距离较远的19台变频器实施远程监控,能在*监控室的人机界面上自动/手动设定、修改和写入频率值与启停各台变频器,可实时监测到中央空调水泵风机电机实际工作电压、电流、频率的大小,并具有声光报警等功能。具体控制方法是:采用一台DVP-PLC、一台人机界面PWS-3760和19台VFD-P系列变频器通过RS-485串行通讯方式组成一个实时通信网络(如图三所示),在现场设定好19台变频器的通信参数,如控制方式为RS-485通讯指令,通讯地址:1-19,波特率为9600,通讯资料格式等;设计系统PLC程序,程序流程图如图五所示。要求手动控制有即时设定、修改和写入频率值与启停各台变频器等功能,自动控制采用二个时段控制,可以随时设定二个时段值和对应的二个频率值,现使用时段值一:7:30对应频率一 45HZ,时段值二:23:00对应频率二 35HZ。程序设计参照VFD-P变频器通讯协议,采用PLC与变频器间的一些RS-485通讯指令实现系统的远程监控,还可通过打印机实现报表的打印。
五、结束语

    采用交流变频调速器对中央空调系统的水泵、风机进行节能改造,不但操作简单方便、节约电能降低生产成本,而且大大地改善水泵风机的运行条件,减少水泵、风机、阀门等的维护量。本变频改造项目及监控系统自2002年5月投运以来,已连续运行二年多,系统运行可靠平稳,通讯数据准确及时,使设备管理规范化,提高了工作效率,需要在线改变的量为时段与频率的设定值,采用人机界面作为人机交互工具,简单直观,便于操作。PLC作为*处理单元,两者在变频监控系统中结合使用,实现了该系统的远程监控、手动即时变频和自动分时段变频等功能,在实际使用中取得良好的效果,值得推广到其他行业应用。

202207281244519172844.jpg202202231632200382714.jpg


每台步进电机都有一台驱动器,共四台驱动器,驱动器由PLC控制。电机输出轴经减速机输出给胶辊。

    由于绝大多数PLC只有两个高速输出口,可控制两台步进电机驱动器。也可采用一台主机加高速定位模块完成对四台电机的控制,但定位模块成本比较高。本系统采用了两台台达DVP14ES型PLC。台达DVP系列PLC输入输出较小为8入/6出。由于价格合理,本系统采用2台主机,仍比其它品牌机型加定位模块合适,并且输入、出量配置也较合理。一台PLC的高速脉冲Y0、Y1控制2台步进驱动器的运行速度,其Y4、Y5分别控制步进驱动器的运转方向,步进电机驱动器要求输入速度信号及方向信号。

三、工作原理

    3.1刮与胶辊平行调整。由于某原因,可能导致刮与胶辊不平行,也就是一个轴左右两边与刮间隙大小不一致。可以调整工作轴中的一台电机,使其上升或下降使刮与胶辊平行。调整平行后即可使本胶辊投入正常使用。在人机界面上设计有控制A轴A机和B轴A机的手动按钮。间隙由塞尺测量。

    3.2 工作间隙的调整。在投入自动使用前,必须对间隙进行调整。在界面上有两种方法可以实现。一种是点动控制,另一种是设定运行数据进行控制。点动控制适用于在不知道胶辊与刮间隙时的初次调节间隙。首先用点动控制使胶辊与刮间隙为零,即调零。然后再人机界面上设定打开间隙量。当改变坯布品种时,只需根据两种坯布厚度差别,设定要改变的间隙量即可。

    3.3 人机界面的设计。 一台人机界面通过RS485通讯线与2台PLC相连。在人机界面程序设计中,可以利用PWS提供的宏指令,一个按钮控制两个PLC的中间继电器M20,即自动按钮。当M20为ON时,两个PLC的工作状态为自动模式。人机界面上还可以设定自动运行时刮打开间隙。分别有两个数值输入按钮,写进两台PLC,经过数据变换,作为步进电机控制器的脉冲输出量。调零工作完成后,调整工作间隙,然后使M20置为ON,投入自动运行。

    3.4 步进电机驱动器的设置。步进电机驱动器的细分设置为0.72,即PLC输出给步进电机驱动器每500个脉冲,步进电机输出轴旋转一周。细分值与PLC的高速输出命令相配合。细分过大时电机会因负载大而失步,细分太小时,在自动运行时,打开距离不够而使布缝被刮断。

1.2 工作原理 
干式变压器的安全运行和使用寿命与变压器运行温度的高低有着直接的关系,因此对变压器运行温度的实时监控十分重要。由传感器对变压器铁心和绕组的温度进行采样,所测温度信号经放大和A/D转换后送PLC,利用软件进行数据处理,处理后的数据送HMI进行实时显示。在HMI上设定风机自动启/停温度,PLC根据设定值,可自动启/停变压器所配备的冷却风机,对变压器进行降温。必要时还可通过触摸HMI上按钮,手动启停风机。在HMI上设置超温报警及超温跳闸温度限定值。当变压器绕组温度过高,超过限定值时,PLC将输出绕组超温报警信号和绕组超温跳闸信号,并在HMI上显示出具体信息。在HMI上可进行手动消音,手动跳闸操作。记录各种报警信息及故障发生时的各相温度值,必要时,可在HMI上输入时间条件进行查询,并根据需要随时进行打印。该系统中的数据采集处理、风机运行和故障报警由PLC和HMI通过编制相应的软件来完成。 
2、系统的软件设计 
SIMATIC ProTool是西门子公司推出的组态软件,该软件由2部分组成:ProTool/Lite、ProTool或ProTool CS(组态系统)组态软件和用于过程可视化的运行系统软件(例如ProTool/Pro RT)。2个系统均可以在bbbbbbs98 SE、bbbbbbs Millenium、bbbbbbs2000和bbbbbbs NT 4.0操作系统上运行。该软件具有报警记录、报表打印、趋势曲线等多种功能,并支持除Siemens之外的第三方制造商的通讯协议。本系统在其基础上进行了画面设计、通讯组态、报警设置、安全保护设计等一系列应用开发。
 2.1 画面设计 
触摸屏画面设计不仅要求能实现所有的控制功能(输入及显示参数、存储纪录、报警、打印等),而且要简单明了,易于操作人员正确的执行操作。考虑系统所需监控的过程变量和实际功能,共组态了8组画面,下面介绍几个基本画面。

[NextPage]
(1) 主画面 
设计的监控主画面如图2所示。主画面的*是温度的数据显示。上半部分采用纯数字方式对变压器三相的铁心温度及高、低压绕组温度进行实时显示;下半部分采用模拟显示方式,**变压器的较高铁心温度和较高绕组温度。在程序运行时,各温度值可动态显示。主画面的右部为口令输入域和触摸操作区,此处各按钮需输入不同级别的口令方可进入。主画面的下部为*权限的触摸操作区。操作人员通过触摸按钮,可以切换到各监控子画面,进一步掌握系统的工作情况,或进行参数设定与修改。

(2) 故障记录
每当有报警信号产生,都会在触摸屏界面上弹出报警消息窗口,同时报闪烁。将报警消息进行归档,再创建一画面组态消息视图,就可保存并显示系统运行以来的所有报警消息。提示报,报警产生的日期、时间,报警产生的原因,以及是否确认等信息。 (3) 数据记录 
组态事件消息并归档,在每次产生报警时,对各相的铁心温度和绕组温度通过归档事件消息进行记录,以便将来查询。 
(4) 温度实时趋势图 
实时趋势图用于在线显示较慢而连续的过程变量。显示时,实时趋势在每个时间单位(时钟脉冲)内一次只从PLC读取一个趋势值,并添加至操作单元上显示趋势。该程序*组态3组实时趋势,每组显示一相的高压绕组、低压绕组及铁心温度3个变量的曲线,每个变量每10s读取一次,曲线同时显示100点。 
(5) 参数设定 
在本画面中,操作员可以对风机的自动启/停温度,绕组超温报警温度和绕组超温跳闸温度进行设定,调整。进入该画面后,若软键盘10s内无动作,系统将自动返回主画面。
2.2 安全保护设计 
 ProTool允许用户使用口令来阻止其他未授权人员使用控件,从而增加系统的安全性。ProTool提供的口令级别从0到9。口令级0不需输入口令;口令级1至8,根据功能的重要性进行分配;如用户分配到口令级4,则可执行口令级0到4的功能。口令级9仅授权于系统管理员。针对安全管理和操作的需要,该系统中定义了系统管理员级即9级和操作员1级两级口令。对参数设定和手动跳闸功能需使用系统管理员级口令,其他操作,如

[NextPage]

消音、手动启/停风机、查看历史记录等,也要先输入口令进行登陆。输入口令,触摸“登陆”按钮,再触摸其他功能按钮,便可进入等于或低于该口令级别的子画面。子画面操作完毕返回主画面后,触摸“退出”按钮,则口令失效,再次进入子画面需重新输入口令。若没有触摸“退出”按钮,系统将在1min后自动撤销口令。 
2.3 人机界面与PLC之间的通讯 
西门子人机界面与PLC之间的通讯方式有3种:PPI(点到点)通讯方式,MPI(多点)通讯方式和PROFIBUSDP通讯方式。该温控系统中采用MPI(多点)通讯方式。
S7-300 PLC上有一标准化的MPI接口,它既是编程接口,又是数据通讯接口,使用S7协议(主要用于较近距离的数据通讯)。由于MPI接口是RS485结构,PLC与人机界面之间通过RS485线相连,其传输速率为187.5k波特率。一个MPI网可以有多个网络节点,其地址是在S7-300硬件组态中设置的。该系统中人机界面的MPI地址为“1”;CPU的MPI地址为“2”。 
人机界面与过程之间通过PLC利用变量进行通讯。通常在PLC和操作单元之间交换的数据为过程数据。为此在组态中创建指向PLC上某个地址的变量。触摸屏从*的地址中读取该数值并显示它。同样的,操作员可以在触摸屏上输入将被写入PLC上某个地址的数据。 
3、结束语
在110kV干式变压器温控系统中将PLC和触摸显示屏结合在一起,并采用PLC和触摸屏的相应软件对各采样值进行控制、处理,在温度的实时显示、数据记录、报警等方面具有很大的优越性。操作人员不仅能方便的观察和掌握变压器的实时运行温度,还可根据报警消息,快速的排除故障;借助历史记录,管理人员还可对重要数据进行分析、查询,为电力调度、系统规划等方面提供重要的依据,大大提高运行管理水平。



http://zhangqueena.b2b168.com

产品推荐