产品描述
西门子6ES7221-1BF22-0XA8使用说明
1 引言
温度是工业上常见的被控参数之一,温度控制系统被广泛应用于加热炉、热处理炉、反应炉等,而恒温控制在生产当中占有很大的比重,很多的生产当中均需要保持一定的温度范围,因此研究恒温控制具有普遍意义[1]。本文采用PLC在恒温箱装置中的应用进行设计,利用传感器对水箱中的温度进行,通过热电阻出水箱内的温度,再用温度传感器把温度变成电压信号,在经过转换电路把得到的模拟信号送入控制器,通过比较采集的信号与PLC中的设定值来控制温度的。此系统充分利用了现代先进的科学技术,改善了工作条件,提高了劳动生产率,减轻了工作人员的劳动强度,不但克服了人为的不稳定因素,而且吸收人为调节的优点[2]。本文以PLC恒温水箱控制为例,对温度控制系统进行初步探讨。
2 工作原理介绍
本控制系统采用FX2N-64MR PLC,以可编程控制器为核心,组成一个集温度的采集、处理、显示、自动控制为一身的闭环控制系统。水箱中的液位值,其模拟量转换为开关量进行控制,温度控制通过热电阻及热电阻模块再进行PID调节,得到偏差来控制加热装置的功效。用一个加热装置进行加热时,选定热电阻作为温度传感器,通过PLC的模拟量扩展模块热电阻对采集到温度数据,模块本身将线性化处理,冷端补偿,不需要任何外部的变送器或外部电路,就能完成全部数据采集及数据处理功能。由PID运算之后,得到一个差值来对晶闸管的功率进行调节。利用LED显示管显示采集到的温度值,为了方便对各种水箱中水温进行控制,可以把通过一个拨码盘输入数据给PLC,对给定的温度值进行修改[3] 。系统原理如图1所示。
3 系统硬件设计
首先利用传感器对容器的液位﹑温度进行检测,经过PLC逻辑运算处理后对相应的执行器进行控制。主要包括温度控制电路设计、温度采集电路等。
3.1温度采集电路
在温度采集和控制系统中,温度传感器采集到的温度信号大都是微弱的模拟电信号,要经过一系列的转换,包括放大、模/数转换、冷端补偿、线性化处理、数字滤波等,才变成了计算机能够接收和处理的有效的数字信号。在PLC温度控制系统中,温度传感器采集到的微弱毫伏电信号不能直接送给PLC的A/D转换模块,必须由外部温度变送器将温度信号进行放大、冷端补偿、线性化处理,再送到A/D转换模块的输入通道,转换为规范的数字信号供 PLC处理。在FX系列PLC中具有热电阻模块FX2N-4AD-PT,能自动进行线性化处理,有冷端补偿功能[4]。
3.2温度控制电路设计
本设计中的触发电路的控制触发电路如图3所示,双向晶闸管过零触发采用带过零触发的光电隔离集成芯片MOC3061。MOC3061芯片的输出端用4、6管脚,一般采用6脚接外部电源相线,4脚接零线的方式,这样可以通过内部过零检测电路,保电压过零时发出触发脉冲触发外部双向晶闸管。与传统触发电路结构相比不需同步电源变压器、脉冲变压器、触发器的工作电源运行十分可靠,性能价格比高。
4 PID控制程序设计
本文采用基于PID过程控制模块的控制方法,利用FX2N-2NLC的自调节功能,自动调节各相关参数。PID回路有2个输入量即SP(给定值)和PV (过程变量)。SP通常是固定值,PV则要经过扩展模块经A/D转换后得到。SP与PV是实际值,由于PLC考虑到系统的通用性,对不同系统的数字大小、范围与工程单位的区别,故在PID运算之前要将他们转换成标准化浮点数,即转换为0.0~0.1之间的标准化实数,这可通过指令运算来完成。与之相对应回路的输出,要将运算后的标准化实数(0.0~0.1之间)转换成16 b的二进制数,再通过D/A转换输出[5]。
系统的主程序功能图如图4所示。在这个主程序的功能图中,关键是进行并行分支的合并处理,在一些并行分支合并时,由于各分支不一定同时结束,所以设计一些等待状态是必须而又合理的。对等待状态的复位处理要使用复位指令。并行分支合并后转移到新的状态可以有转移条件。
5 结论
本文设计的是PLC在恒温中的应用,利用传感器对容器的液位﹑温度进行检测,经过PLC逻辑运算处理后对相应的执行器进行控制,本设计只完成了一些基本的功能,还有更高的控制功能。比如,人机界面(GOT)、可编程控制器与上位机的通信等。因此,未来温度控制系统为符合需要,其科技程度将高度自动化和智能化,具备很强的通信能力。
1引言
自1907年**台电除尘器成功地用于工业生产以来,电除尘器以其除尘效、阻力损失少、处理烟气量大、能处理高温烟气和腐蚀性烟气、日常运行费用低等众多优点,使用领域不断扩大。到目前为止,电除尘器已经是电力、冶金、建材、化工等众多行业除尘设备的可以选择。电除尘器的结构、性能和控制方式等也日臻完善,PLC控制在电除尘系统各部分的控制中都有不同程度的应用,作用显著。
2电除尘系统工艺流程及基本原理
电除尘器是在两个曲率半径相差较大的金属收尘较(阳极)和电晕较(阴极)上通过高压直流电,并维持一个足以使含尘气体(指一般的含尘烟气,不含腐蚀性和剧毒)电离的静电场(见图1)。含尘气体在静电场中电离后所生成的电子、阴离子和阳离子吸附在通过电场的粉尘上,而使粉尘获得电荷自身带电。荷电粉尘在电场力的作用下向电极性相反的电极(收尘较和电晕较)运行而沉积在电极上,从而达到粉尘和气体分离的目的。当沉积在电极上的粉尘达到一定厚度时,借助于收尘较、电晕较振打机构使粉尘落入下部的灰斗中,再经过卸灰输灰系统将粉尘排出,而净化后的气体从电除尘器出口处排入大气中[1]。
3系统组成
以济钢炼铁厂400m2烧结机机头电除尘系统为例,整套400m2烧结机机头电除尘自动控制系统由2台ABLogix50001756-L55PLC和2台上位机组成,其中1台ABLogix5000PLC设置了1台远程I/O站,2台上位机分别用于操作员站和工程师站(见图2)。
PLC在电除尘系统中主要作用是控制所有低压设备自动运行和远程监控高压整流供电设备,对低压设备的控制一般都有现场手动和远程自动两种控制方式,所控制的设备包括阴极振打、阳极振打、灰斗卸灰阀电机、仓壁振动器、绝缘子保温梁电加热器、灰斗保温电加热器、灰斗料位计、烟气进出口温度显示、绝缘子保温梁温度显示、声波清灰装置、输灰系统、高压供电设备安全联锁以及远程监控等[2](见图3)。下面对自动控制方式进行简要介绍。
4.1阴、阳极振打的控制
电除尘器的阴、阳极振打都是由电机通过传动轴将动力传给阴、阳极振打机构,使阴极线、阳极板上的积灰振落到灰斗中。PLC系统通过控制器中的时间继电器控制阴、阳极振打电机按照一定的时间规律相互配合运行,并根据振打电机对应的接触器和热继电器的返回信号对电机状态进行监控和保护。阴、阳极振打的一般控制规律为:一电场的阴、阳极振打周期较短,以后的各个电场振打周期逐渐加长,具体时间需根据电除尘器刚投产时的测试情况及工艺参数进行确定;以24小时为总振打周期,夜间运行周期要比白天运行[3];阴、阳极振打相互配合运行,但振打周期各自独立计算,阳极振打要比阴极运行时间长、强度大;振打反馈信号只起状态监视和保护作用,不加入周期运行控制当中;为节约能源,振打运行反馈信号与高压整流供电设备有联锁,当大量振打运行时,高压整流供电设备低电压运行或停止,以实现降压振打,此方式可节约大量能源。
4.2绝缘子保温梁电加热器的控制
PLC系统通过绝缘子保温梁内温度检测设备检测到的温度返回信号对电加热器进行控制,以防止保温梁内温度低于露点温度,阴极绝缘子表面结露,使绝缘子表面产生爬电或沿面放电,以致电除尘器工作电压无法升上去,除尘器无法正常工作。本系统电加热器共有两路电源,可实现高、低两种功率加热,当保温梁内温度接近露点温度时,PLC控制电加热器两路全部加热,尽快提高保温梁温度;当温度在露点温度以上未到设定温度时,单路加热器加热保持温度缓慢上升;当温度**设定温度值时,停止加热。PLC系统还可根据接触器和热继电器返回信号对电加热器状态进行监控和保护。
4.3灰斗卸灰阀电机及仓壁振动器的控制
灰斗卸灰阀电机是用于灰斗卸灰时电动控制阀门开关的。PLC对灰斗卸灰阀电机以及该灰斗仓壁振动器的自动控制是根据灰斗料位计返回信号实现的,当料位计高料位信号返回PLC时,PLC控制该灰斗卸灰阀电机开启,同时仓壁振动器联锁振动;当料位计低料位信号返回PLC时,PLC控制该灰斗卸灰阀电机关闭,同时仓壁振动器联锁停止。当不使用料位开关控制或料位开关存在故障时,也可根据经验运行时间对灰斗卸灰阀电机和仓壁振动器进行周期控制,具体时间可根据现场情况自行设定,但灰斗卸灰阀电机要与仓壁振动器有一定配合关系或一起联锁运行,否则会造成卸灰不畅甚致堵灰。
4.4输灰系统的控制
本输灰系统使用的是机械干输灰方式,输灰系统由刮板机、集合刮板机、斗提机、卸灰阀电机、加湿机等组成。输灰系统的控制与皮带流程控制相似,当灰斗卸灰电机运行时,灰斗卸灰阀开启,与此一排灰斗对应的刮板机联锁运行,其他排灰斗卸灰控制同理,每台刮板机可单独运行也可同时运行。当任意一排灰斗对应的刮板机运行时,集合刮板机联锁运行,斗提机联锁运行,将除尘灰刮入卸灰仓内,当控制器接到卸灰仓料位高信号时,卸灰阀电机、卸灰仓电振、加湿机联锁运行,将除尘灰排出。
4.5高压供电设备的安全联锁及远程监控
所有电除尘器的高压整流供电设备都有自己的控制器,这些控制器的网络接口都各有不同,以串口通讯为例,PLC系统可通过串口采集器及与Logix5000相匹配的**模块与该控制器进行通讯,可实现PLC系统对高压整流设备远程控制启动和停止,也可对高压整流设备运行状态及参数进行监视。安全联锁是专门为高压供电设备设计的程序,在远程控制高压供电设备启动时,整流变压器及三点隔离开关返回PLC的安全联锁信号必须满足条件,否则高压供电设备不允许启动,此联锁对检修设备时的人身安全及设备运行都起到很大作用。
4.6声波清灰装置的控制
声波清灰装置是与电除尘器相对独立的一个系统,作用是在电除尘器停运时对除尘器内部积灰进行彻底清理,运行时将积灰振到灰斗中排出。故PLC对声波清灰装置的控制经常用集中手动操作方式运行,当点击运行时,声波清灰装置按照固定顺序清灰一次,并可通过时间继电器对运行时间进行控制,在规定时间内执行循环清灰。
1 引言
本文介绍的全自动无骨架系列空心电磁线圈高速绕线机,可以绕制传动线圈,扬声器线圈,天线线圈以及各种无骨架通用线圈。设备具有性能可靠,高速率,自动化程度高,适合于线圈制造业的批量生产,如图1所示。
一般普通绕线机采用内置脉冲功能的小型PLC,通过绕线轴编码器速度输出到PLC内置高速输入点,将绕线轴与排线轴的速比进行简单速度同步,这种方法受 PLC运算影响,同步精度差,计算量大,CPU处理时间较长,因此会出现绕线不均匀,堆积,塌陷等问题,严重影响绕线成品的质量,举例来说,PLC对绕线轴编码器作高速计数,当到达计数值时利用中断方式控制排线轴电机反向绕制,但受CPU运算处理时间的影响会出现滞后产生误差,在低速的情况下尚可基本达到绕制要求,但是对于高速绕制多层线圈时就会出现线圈端面不齐整,成品品质下降。
台达DVP-20PM00D是一款**运动控制型PLC,采用高速双CPU结构形式,利用独立CPU处理运动控制算法,可以很好地实现各种运动轨迹控制、逻辑动作控制,直线/圆弧插补控制等,在高速绕线机中利用了20PM运动控制器的电子凸轮功能很好的解决了绕线换向出现的绕制不均匀、堆积、不平整等问题。
2.1 设备结构简介
高速绕线机共包含九部分机构
(1)机架。机架由角钢框架及不锈钢台面组成,并设置脚轮便于移动,当设备到位后可将支脚调低作为稳定支撑。
(2)张力机构。安装于进线部分,作为绕线张力调节,保证线圈绕制时维持张力恒定,张力调节器具有调节旋钮可针对不同需求进行张力调节设定,调整完毕后,张力调节器自动控制绕线张力。
(3)绕线机构。主要由台达B系列200W伺服电机、同步齿形带、绕线飞叉组成,是电子凸轮运动中的绕制主轴,铜线经过飞叉旋转绕制于绕线模头上,是绕线机主要运动部件之一。
(4)排线机构。包括台达B系列100W伺服电机、精密直线螺杆、精密导轨、气动滑叉等,是电子凸轮运动中的排线从轴,在绕线运动中跟随绕线主轴正反向往复运动实现排线动作,是绕线机主要运动部件之一。
(5)工作转台
由分度步进电机、旋转台、线叉、绕线模头组成,该设备为多任务位绕线机,在绕线同时执行模头预热、剪线、加热、脱模等工艺动作,这需要工作转台按不同工位动作完成。
(6)剪线机构。为气动执行机构,主要是将绕制完成的线圈两端引线剪断。
(7)脱模机构。由分度步进电机、气动脱模组成,将绕制完成的成品从绕线模头取下。
(8)热风系统。设备配置两个可调温度220V热风,在绕线前将模头预热,绕线后对线圈进行热风处理便于脱模。
(9)电气控制。包含电气控制箱、触摸屏操作盒。采用DVP-20PM00D运动控制器作为控制核心,触摸屏作为人机交换,伺服电机作为执行机构,实现转轴与排线的精确控制,从而保证绕线的精度
一、概述
近年来随着国家对可再生能源扶持政策的进一步出台,可再生能源特别是风力发电呈现蓬勃发展的趋势,国内众多厂家正通过*和技术引进等形式进行风电设备的成套工作。目前,国内生产厂家对高速齿轮箱、电机和叶片等已具有了独立生产能力,但作为风力发电控制系统的大脑——风电控制器,一直以来主要依靠国外技术引进。通过对国内主流风电设备生产厂家的控制系统研究发现,多数厂家的控制系统是和主机一起成套技术引进而来,如MITA和WINDTEC公司的产品。由于风电设备运行环境较为恶劣,安装空间有所限制,并且要求有很强的数据处理能力,因此现有的通用可编程控制器很难达到其技术要求。一是高低温要求,通用PLC运行温度一般为0℃~50℃,但风电设备要求运行在-25℃~60℃的环境中。虽然有国内厂家采用了通用PLC作为主控器,但在系统设计时需在机柜增加加热器,以保证在低温环境下的可靠运行,这种处理方式虽然能满足运行要求,但可能会造成在**低温环境下PLC上电后不能立即运行,并且加装了加热器导致PLC安装空间更加狭窄。二是数据处理能力,现有的通用可编程控制器因本身设计思想的不足导致在功能上无法满足大规模数据存储的需要。对国外引进控制系统的研究表明,国外控制系统多采用嵌入式PC(如Bachmann、BeckHoff等)作为主控制器来适应风电控制系统的需求。
本方案以NA400系列可编程控制器为基础,针对某电站3MW(可适用于2.5MW和1.5MW机组)风机控制器的技术要求,在广泛吸收国外同类产品控制系统的技术优点的基础上提出的。
由于变流器和变浆系统采用成熟系统配套,因此本方案仅涉及3MW风力发电机组主控柜(主站)和机舱柜(机舱站)的控制。
二、技术需求
(1)编程软件符合IEC61131-3国际标准;
(2)软件支持多;
(3)对CPU速度及处理能力、存储空间等有较高要求(要求具有100M的数据存储能力);
(4)I/O要求:输入光电隔离、输出继电器(总点数在100点以内);
(5)运行环境恶劣,要求具有较高的可靠性:
? 运行温度:-20℃~50℃
? 储存温度:-40℃~70℃
? 较高的湿热要求,要求防湿抗凝露
(6)通信要求:
? 以太网接口,支持TCP/IP、UDP等
? Profibus-DP现场总线
? CANOpen现场总线
(7)人机界面采用具备按键操作的平板电脑,支持WinXP 嵌入式操作系统,不采用 常规的触摸屏;
(8)信号类型:DI、DO、AI(0~10V和4~20mA)、Pt100热电阻、AO、SSI、高速计 数器模块;
(9)结构要求:安装方便,所有螺钉应防锈。
三、技术方案
针对风力发电设备运行环境严酷、技术要求高的特点,现有通用PLC很难适应其应用需求。我公司NA400型可编程控制器采用一系列计算机领域和工业控制领域的较新技术研制。系统结构先进、功能强大、具有多任务、趋势曲线、环境适应性强等特点,适合风电行业的特点。
3.1系统结构
采用LAN/FieldBus系统结构,主控站控制器对外提供百兆以太网接口,利用现场总线完成机舱扩展站控制器或其它现场智能设备(变频器等)的连接。主控站以太网接口支持标准的MODBUS TCP/IP规约,并支持UDP协议。
现场总线支持ProfiBus-DP或CANOpen。可以方便地利用现场总线完成远程I/O站的扩展,并能与其它智能设备通信。本方案中拟采用CAN总线,CAN总线的短信文结构及完备的底层校验和错误处理机制使得CAN总线具有优越的抗干扰性。根据现场环境的不同可选用光通信介质以提高可靠性。
3.2人机界面
3.2.1平板电脑
人机界面(面板)硬件采用工业级平板电脑,可以采用以太网、串口、Profibus- DP等进行面板和控制器的组网连接。
采用我公司的ontrol组态软件开发界面,ontrol组态软件与控制器之间通过我公司开发的NA-PLC OPC服务器(OPC2.0规范)或者**驱动程序通讯,底层协议不产生额外费用。NA-PLC OPC服务器可以方便地接入支持OPC接口的组态软件中(如iFix,WinCC等),因此如果不采用我方提供的面板,也可以方便地进行其他厂家面板与我方控制器之间的通讯。
ontrol组态软件特点:
基于bbbbbbs平台,采用面向对象的技术和方法进行系统设计、软件实现。遵循TCP/IP、SQL、ODBC、COM/DCOM、ActiveX、C++、Office、IEC61131-3、OPC等国际标准,系统功能齐全,操作简便,维护量小。具有良好的开放性、方便的扩展能力、完善的在线帮助及可不断融入新技术的特征。它具有数据采集和处理、控制与调节、画面、智能报警、报表、历史数据统计和查询、可视化顺控流程组态与执行、ONCALL、AGC/AVC高级应用软件、Web服务、与外系统通讯等功能。
3.3方案优势
结合我公司PLC技术优势和贵公司熟悉风机控制需求优势,我们开发的风机**可编程控制器与其它通用PLC或者现有风机控制器相比具有巨大的技术优势:
(1)可靠性高
采用工业级或级芯片保证风机控制器可以运行在-25℃~60℃环境下。
(2)抗干扰能力强
采用CAN总线为现场总线网络,CAN总线是一种有效支持分布式控制或实时控制的串行通信网络,其*有的短信文结构及完备的底层校验和错误处理机制使得CAN总线具有优越的抗干扰性。
高等级抗电磁干扰能力可以有效地防止现场干扰、提高系统数据采集的稳定性和运行可靠性。
(3)支持大容量数据存储
支持128M数据存储,可有效存储风机故障时产生的数据。
(4)实时多任务
风机发生故障时生成100Mbytes大小的文件,在控制器正常运行的情况下可以采用多任务技术存储,避免影响控制器的正常工作,数据存储空间为单独配置的FLASH。
由于采用了实时多任务的方式,支持定时中断方式,因此可以方便地实现定时周期执行控制程序,保证程序执行时间恒定。
(5)编程软件
产品推荐