• 6ES7235-0KD22-0XA8原装代理
  • 6ES7235-0KD22-0XA8原装代理
  • 6ES7235-0KD22-0XA8原装代理

产品描述

产品规格模块式包装说明全新品牌西门子

6ES7235-0KD22-0XA8原装代理

随着工业设备自动化控制技术的发展,可编程控制器(PLC)在工业设备控制中的应用越来越广泛。PLC控制系统的可靠性直接影响到企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。本文详细介绍了影响PLC运行的干扰类型及来源,并提出抗干扰设计的实施策略。

    自动化系统所使用的各种类型PLC中,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力,另一方面要求应用部门在工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。

1. 电磁干扰类型及其影响

    影响PLC控制系统的干扰源与一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是干扰源。

    干扰类型通常按干扰产生的原因、噪声干扰模式和噪声波形性质来划分。按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,可分为持续噪声、偶发噪声等;按噪声干扰模式不同,分为共模干扰和差模干扰。

    共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。共模电压有时较大,特别是采用隔离性能差的配电器供电时,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成差模电压,影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流、亦可为交流。差模干扰是指作用于信号两较间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的,这种干扰叠加在信号上,直接影响测量与控制精度。

2. 电磁干扰的主要来源

2.1 来自空间的辐射干扰

    空间辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布较为复杂。若PLC系统置于其射频场内,就会受到辐射干扰,其影响主要通过两条路径:一是直接对PLC内部的辐射,由电路感应产生干扰;二是对PLC通信网络的辐射,由通信线路感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小特别是频率有关,一般通过设置屏蔽电缆和PLC局部屏蔽及高压泄放元件进行保护

2.2 来自系统外引线的干扰

    主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较为严重,主要有下面三类:

    第一类是来自电源的干扰。实践证明,因电源引入的干扰造成PLC控制系统故障的情况很多,笔者在某工程调试中遇到过,后更换隔离性能更高的PLC电源问题才得到解决。

    PLC系统的正常供电电源均由电网供电,由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压和电流,尤其是电网内部的变化、开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。PLC电源通常采用隔离电源,但因其机构及制造工艺等因素使其隔离性并不理想。实际上,由于分布参数特别是分布电容的存在,**隔离是不可能的。

    第二类是来自信号线引入的干扰。与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这种往往非常严重。

    由信号引入的干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。PLC控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。

    第三类是来自接地系统混乱的干扰。接地是提高电子设备电磁兼容性(EMC)的有效手段之一,正确的接地既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地反而会引入严重的干扰信号,使PLC系统无法正常工作。

    PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等,接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层。当发生异常状态如雷击时,地线电流将更大。

    此外,屏蔽层、接地线和大地可能构成闭合环路,在变化磁场的作用下,屏蔽层内会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。

2.3 来自PLC系统内部的干扰

    主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射、模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。这都属于PLC制造厂家对系统内部进行电磁兼容设计的内容,比较复杂,作为应用部门无法改变,可不多考虑,但要选择具有较多应用实绩或经过考验的系统。

3. 抗干扰设计

    为了保证系统在工业电磁环境中免受或减少内外电磁干扰,必须从设计阶段开始便采取三个方面抑制措施:抑制干扰源、切断或衰减电磁干扰的传播途径、提高装置和系统的抗干扰能力。这三点就是抑制电磁干扰的基本原则。

    PLC控制系统的抗干扰是一个系统工程,要求制造单位设计生产出具有较强抗干扰能力的产品,且有赖于使用部门在工程设计、安装施工和运行维护中予以全面考虑,并结合具体情况进行综合设计,才能保证系统的电磁兼容性和运行可靠性。进行具体工程的抗干扰设计时,应主要注意以下两个方面。

3.1 设备选型

    在选择设备时,首先要选择有较高抗干扰能力的产品,其包括了电磁兼容性,尤其是抗外部干扰能力,如采用浮地技术、隔离性能好的PLC系统;其次还应了解生产厂家给出的抗干扰指标,如共模抑制比、差模抑制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作等;另外是靠考查其在类似工作中的应用实绩。

    在选择国外进口产品要注意,我国是采用220V高内阻电网制式,而欧美地区是110V低内阻电网。由于我国电网内阻大,零点电位漂移大,地电位变化大,工业企业现场的电磁干扰至少要比欧美地区高4倍以上,对系统抗干扰性能要求更高。在国外能正常工作的PLC产品在国内工业就不一定能可靠运行,这就要在采用国外产品时,按我国的标准(GB/T13926)合理选择。

3.2 综合抗干扰设计

    主要考虑来自系统外部的几种抑制措施,内容包括:对PLC系统及外引线进行屏蔽以防空间辐射电磁干扰;对外引线进行隔离、滤波,特别是动力电缆应分层布置,以防通过外引线引入传导电磁干扰;正确设计接地点和接地装置,完善接地系统。另外还必须利用软件手段,进一步提高系统的性。

4. 主要抗干扰措施

4.1 采用性能优良的电源,抑制电网引入的干扰

    在PLC控制系统中,电源占有较重要的地位。电网干扰串入PLC控制系统主要通过PLC系统的供电电源(如CPU电源、I/O电源等)、变送器供电电源和与PLC系统具有直接电气连接的仪表供电电源等耦合进入的。现在对于PLC系统供电的电源,一般都采用隔离性能较好的电源,而对于变送器供电电源以及和PLC系统有直接电气连接的仪表供电电源,并没受到足够的重视。虽然采取了一定的隔离措施,但普遍还不够,主要是使用的隔离变压器分布参数大,抑制干扰能力差,经电源耦合而串入共模干扰、差模干扰。所以对于变送器和共用信号仪表供电应选择分布电容小、抑制带大(如采用多次隔离和屏蔽及漏感技术)的配电器,以减少PLC系统的干扰。


    此外,为保证电网馈电不中断,可采用在线式不间断供电电源(UPS)供电,提高供电的性。而且UPS还具有较强的干扰隔离性能,是一种PLC控制系统的理想电源。

4.2 正确选择电缆的和实施敷设

    为了减少动力电缆尤其是变频装置馈电电缆的辐射电磁干扰,笔者在某工程中采用了铜带铠装屏蔽电力电缆,降低了动力线产生的电磁干扰,该工程投产后取得了满意的效果。

    不同类型的信号分别由不同电缆传输,信号

电缆应按传输信号种类分层敷设,严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠行敷设,以减少电磁干扰。


4.3 硬件滤波及软件抗干扰措施

    信号在接入计算机前,在信号线与地间并接电容,以减少共模干扰;在信号两较间加装滤波器可减少差模干扰。

    由于电磁干扰的复杂性,要根本干扰影响是不可能的,因此在PLC控制系统的软件设计和组态时,还应在软件方面进行抗干扰处理,进一步提高系统的可靠性。常用的一些提高软件结构可靠性的措施包括:数字滤波和工频整形采样,可有效周期性干扰;定时校正参考点电位,并采用动态零点,可防止电位漂移;采用信息冗余技术,设计相应的软件标志位;采用间接跳转,设置软件保护等。

4.4 正确选择接地点,完善接地系统。

    接地的目的通常有两个,一为了安全,二是为了抑制干扰。完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。

    系统接地有浮地、直接接地和电容接地三种方式。对PLC控制系统而言,它属高速低电平控制装置,应采用直接接地方式。由于信号电缆分布电容和输入装置滤波等的影响,装置之间的信号交换频率一般都低于1MHz,所以PLC控制系统接地线采用一点接地和串联一点接地方式。集中布置的PLC系统适于并联一点接地方式,各装置的柜体中心接地点以单独的接地线引向接地较。如果装置间距较大,应采用串联一点接地方式,用一根大截面铜母线(或绝缘电缆)连接各装置的柜体中心接地点,然后将接地母线直接连接接地较。接地线采用截面大于22mm2的铜导线,总母线使用截面大于60mm2的铜排。接地较的接地电阻小于2Ω,接地较较好埋在距建筑物10?15m远处,而且PLC系统接地点必须与强电设备接地点相距10m以上。

    信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地。多个测点信号的屏蔽双绞线与多芯对绞总屏蔽电缆连接时,各屏蔽层应相互连接好,并经绝缘处理,选择适当的接地处单点接地。

5. 本文小结

    PLC控制系统的干扰是一个十分复杂的问题,因此在抗干扰设计中应综合考虑各方面的因素,合理有效地抑制干扰,对有些干扰情况还需做具体分析,采取对症的方法,才能够使PLC控制系统正常工作,保证工业设备安全运行。

日前,欧姆龙宣布推出 SYSMAC CP1L 系列多功能一体型小型 PLC 和新一代性视觉产品 -- 智能视觉传感器 ZFX-C ,并表示 CP1L 的面市进一步扩展了 CP 系列的产品线。  

    CP1L 本体有14点、20点、30点和40点四种规格,可根据不同需求进行选择,其开关量的扩展也达到了较多160点;程序容量较大 10k 步,数据容量较大为32k字。即使是14点的小点数 CPU 上也内置有 USB 端口,从简单的顺序控制,到脉冲功能和串行端口等应用功能,都是和 CP1H 一脉相承。CP1L 的 CPU 单元搭载了2轴 100kHz 的脉冲输出功能,可在高精度定位上发挥无穷威力;搭载的4轴 100kHz(单相)或2轴 50kHz(相位差)的高速计数器功能则在纺织机械等主轴控制和建材制造机械、石材切割机等搬运定位上大有用武之地; CP1L 还突破性地加入了变频器定位功能,今后无须计算变频器的减速位置,也可对变频器进行快速、简单的定位操作。 

    对于通信功能 CP1L 尤为重视,除标准装配 USB 端口外,还配有1~2个串行可选端口可以任意选择 RS-232C、RS-422/485 接口,与各种元器件连接,增强了亲和力。 CP1L 还加入了不少方便使用的功能,例如:为实现多台 CP1L /CP1H(或 CJ1M)之间的数据交换而加入的串行 PLC 链接功能;针对变频器速度控制加入的 Modbus-RTU 简易主站功能;可以对温度调节器进行简单编程的 Smart FB(功能)程序库等。此外, CP1L 还有丰富的扩展单元可供选择。这些优势使得 CP1L 更加适合中国用户的特定需求,为用户解决实际问题,也必将成为中国用户理想的选择。  

    面向 OEM 客户特别是纺织机械、包装机械、电子制造等厂商推出的 CP1L,本身已是一款颇具竞争力的小型 PLC,而配合欧姆龙的丰富的产品如人机界面、变频器、伺服驱动器、编码器、温控器等之后,更可体现欧姆龙的整体优势,从而实现欧姆龙”为客户提供整体解决方案”的销售方针。  

     ZFX-C 是欧姆龙推出的另一新品,它操作简易,选型安装较为方便快捷,实现了 ALL IN ONE 的一体化设计。这款智能视觉传感器保持了 “Smart Recipe” 智能化视觉理念,仅需“选择较优画面” → “目标检索” → “位置补偿”这3步设置就可以使客户完成对样品的检验。 ZFX-C 性能**,包含了 Pattern(图形搜索)、Defect(缺陷检测)、Region(区域面积)、Bright(明暗检测)、bbbbbbbb(位置检测)、Width(宽度检测)、Count(计数)等视觉传感器的所有基础功能,并附带位置修正、高速、测量值定标、画面预处理、Hue 彩色/黑白检测、128设定区域等功能。而可出微细区别(原来的图像匹配难以出来)的 “Sensitive bbbbbb”、不容易受噪音和背景影响的 “Graphic bbbbbb” 以及可吸收对象物形状误差而防止错误判断的 “Flexible bbbbbb” 等高端功能也在 ZFX-C 登场。  

     ZFX-C 可自由选择镜头和照明的相机,所有相机都支持3倍速读取。在保持整画面读取分辨率的前提下,可实现 11.1m 秒的高速传输。另外,压缩图像的读取(单色款)和部分读取(彩色款)均可实现较短 3.2m 秒的高速传输。  

    智能视觉传感器 ZFX-C 附带有 Camera I/F、USB 2.0、Ethernet 以太网口、RS232-C/RS-422、ParailelI/O terminal 等多种连接端口,可方便地和摄像头、RGB 监视器、计算机、 PLC 等多种外设进行通信,还配备有 SD 卡插槽,可存储较大100个文件。其3.5英寸的 LCD 监视屏更可实现双界面对照显示。在操作性上 ZFX-C 显得更性化,除可外接控制器外, ZFX-C 还可利用手写笔 -- 特别是在进行 “Graphic bbbbbb” 时 -- 直接在屏上在液晶面板上描画、输入检测对象部分。  

    智能视觉传感器 ZFX-C 通过配备可高速处理大量数据运算的引擎 “RT-X”,提高了处理速度。由于相机照片的读取和图像匹配 (Pattern Matching) 运算同时并行处理,处理时间可缩至原来的1/5。同时也提高了图像处理的基本处理内容 -- 图像检索的速度,可用于各种生产线的检测。因此, ZFX-C 的检测领域函括了汽车制造、电子部品制造、食品饮料包装、印刷机械、模塑化工、FPD、机器人等多个行业。  

    为方便经销商宣传和使客户更多更便捷地了解 CP1L 和 ZFX-C 这两款新品,欧姆龙精心制作了样机演示箱、大型海报、宣传单页、营销手册、选型样本、用户手册等促销工具。

202207281244519172844.jpg202202231632201798164.jpg202202231632210850864.jpg


 可编程控制器(PLC)由于其运算速度高、指令丰富、功能强大、可靠性高、抗干扰性强而广泛应用于各种工业控制部分[1],在智能现场控制系统中,选用PLC作为控制器是十分有效的。本文以汽车传动轴防尘罩的检测为背景,着重讨论一种基于PLC控制的模拟汽车传动轴防尘罩实际运行环境的高低温试验箱控制系统的研制。

    汽车传动轴防尘罩的作用是防止灰尘、杂质等进入前轮传动轴的连接处,同时也防止高温润滑油从中溢出。根据有关规定,本系统要求防尘罩在2500转/分下保持其优秀的断裂延展特性,在-60~150℃下,能通过1~6千万次循环试验。在此情况下,我们受委托对汽车传动轴防尘罩高低温试验箱进行改造,以工控机为人机接口,采用PLC程序控制系统。

1 系统功能分析
    传动轴防尘罩温度试验的基本要求是:在规定的温度下,以一定的转速运行一定的时间。交替设定温度、转速及时间(较多为4组)循环一定次数构成一个测试阶段。测试过程较多可设4个阶段,每个测试阶段的循环次数由测试员现场设定。实验中主要控制量有试验箱内温度(-60~150℃)、传动轴转速(0~1500rpm)、固定角及滑动角角度、测试时间(1~60000分)及阶段循环次数。测试过程要求调整固定角及滑动角的角度、启动温度控制系统使温度逐步达到设定值、使传动轴在设定的转速下运行规定的时间。现场设定不同的条件交替测试,循环一定周期。

    根据测试要求,系统应具有手动,自动操作功能。手动操作时,操作人员可以直接控制电机、压缩机、加热器等设备的启停,进行设备维修,调试和试验等;自动操作时,测试装置自动完成整个测试过程。另外,控制系统还应具有完善的保护功能以保护人员及设备安全。任何时候都可以强行停止测试。若测试过程因故障原因终止,需要记录故障原因及测试进展状况。

2 控制系统的设计与实现
2.1 控制系统硬件结构设计
    本系统人机界面部分采用闽台研华公司生产的奔腾机,软件部分采用Delphi编程,在系统中协调控制,打印输出,过程值显示,控制核心部件为OMROM的可编程控制器,它负责各控制系统所需要的各种逻辑控制和运算。被控对象有变频调速系统和温度系统。变频调速由日本安川公司生产的变频器驱动传动轴电机,使传动轴保持一定的转速。温度控制系统是一个典型的闭环控制系统,温度测量元件为铂电阻,由PLC控制电加热器及压缩机,实现加热或制冷。加热系统由三个电加热管组成,制冷系统由两级压缩机组成,其通断由PLC控制。

    为实现检测控制要求,本系统采用日本立石(OMRON)公司CPM2A-40CDR-A的PLC作为主控单元。其输入点数为24点,输出点数为16点。该PLC具有体积小,重量轻,运行可靠,保护方便等特点。系统除了基本的开关量的输入/输出外,还配有模拟量的输入/输出扩展单元。模拟量输入单元用于接收Pt100热电阻温度信号,模拟量输出单元控制变频器输出频率,实时全部模拟信号,进行工程量转换,并与设定的上下值比较,开关量单元用于控制电机的启停,故障的报警等。

2.2变频器控制系统
    本系统的传动轴转速由变频器控制。控制部分主要由PLC、变频器、光电接近开关组成。传动轴旋转部分采用日本SANKEN公司IF-7.5K变频器驱动变频电机。采用转速闭环矢量控制,调速范围0~2500r/min,调速精度<0.02%。PLC通过模拟量输出单元将0~6000的数字量信号转换成4~20mA电流信号给变频器作为频率输出设定。传动轴实际转速反馈信号由PG光电接近开关输出,其输出脉冲经PLC计算作为电机的速度负反馈信号。

    根据生产工艺对系统运行时稳态精度及跟随能力的要求,变频器内部的PID调节器设定为比例积分调节方式,由PLC的速度给定值与由脉冲编码器的现场速度反馈值比较后,得到速度偏差,经比例积分控制器处理后,输出的二次电流信号作为频率输出,送矢量控制系统,控制电机运行。恒功率的分界点以及它们的频率范围内的P.I值,由现场负荷调试确定,已达到较佳运行效果。

    因为转角电机的频繁快速启停,制动时经常会产生很高的泵升电压,因所选变频器为交-直-交电压源时,泵开电压不能回馈电网,故采用制动单元并配以电阻加以吸收。当变频器直流电路升高到一定值(660VDC)时,制动单元中的IGBT管被触发导通,接通制动电阻回路,将转角电机的回馈电能消耗在制动电阻上,以满足快速停止的要求。

2.3温度控制系统
    试验箱内的温度调节范围为-60℃~150℃,具体值由操作员现场设定。系统加热时采用三个晶闸管控制的电加热管,合上主回路的操作开关,整个加热装置开始运行,未达到设定温度时,固态继电器SSR1吸合,1号加管加热,系统逐级开启2号,3号加热管。达到设定温度时,进入保温阶段,采用控制3号,2号加热器的输出通断来调功调温。[2]使用控制箱风机来保证温度均匀变化。如果箱内温度达到高温界限,系统将会报警。 

    单级蒸汽压缩制冷所能达到的蒸发主要取决于冷凝温度及压力比,对于氟利昂制冷剂,一般压力不**过10,这样采用单级蒸汽压缩制冷循环,一般只能制取-20~-40℃的低温因此采用单级蒸汽压缩制冷循环将无法满足本系统制取-60℃低温的要求,在此情况下,决定采用两台低温压缩机组成的复叠式制冷系统,两级复叠制冷系统将**级蒸发器与*二级冷凝器复叠在一起,使*二级低温制冷剂在-35℃左右冷凝,在-80℃左右蒸发,以获得系统所需要的低温。[3]

3 PLC控制系统的软件设计
    为了方便调试和编程,整个软件系统采用模块化编程,主要由手动运行模块,自动运行模块和故障诊断和报警模块。在软件编制时,采用了一些抗干扰措施,增强了整个系统的抗干扰能力,在计算机上可以实现实时操作,控制并观察现场各设备的运行情况。

    当系统处于手动运行时,PLC接收各设备状态,由此判断各设备的运行状态,可单独运转变频电机、加热器、制冷系统的压缩机。便于系统的调试和维修。
系统自动运行时,只须按照计算机屏幕提示,设置操作参数,,试验即完全自动进行下去,并在计算机屏幕上实时显示各设备参数。试验过程中或试验结束后,均可按照提示选择打印方式打印。以下重点介绍温度控制子程序。

    由于系统采用三套晶闸管控制的电加热器。常用的控制方式有两种:一种是分段开关控制,根据温度的高低,逐级开启或关闭加热器。这种方法温度偏差大,精度较低。另一种是PWM脉宽调制,在PLC中实现PWM程序比较复杂。回路中的电加热器为满足温度恒定的需要,经常切换工作状态,而常规的电磁继电器开关触电易磨损,寿命短。所以对**种方法进行改进[4]。

    由于系统是二阶系统,在系统温度下降时,增加加热管,温度由于惯性的原因,温度继续下降一段时间后再上升,同样减少加热管,温度会上升一段时间后再下降。我们将前后两次测量值进行比较,得到温度偏差e,系统根据e来控制加热器的状态转换。当e较大时,此时通过逐级打开加热器来调整温度。

    启停切换顺序为:启动顺序:1# 2# 3#;停止顺序:3# 2# 1#;温度的变化值e: e=Ti-Ti-1。其中Ti ,Ti-1分别是本次温度采样值与前次温度采样值,并记试验箱温度允许上限为HSP,允许下线为LSP。PV为温度测量值。考虑到前后两个采样周期的变化温度e变化不大。当当前温度值PV+**个周期变化温度值e﹥温度设定上限HSP时,就减少加热管。反之,当PV+e﹤LSP时,就增加电加热管。

 电气系统已设计了各种保护,并直接作用至断电,其中包括:缺相保护、过载保护、旁路保护。 其中变频器具有短路、过载等保护功能,当变频器所驱动的电机发生短路、过载等故障时,变频器将自动切断一次供电回路,进入保护状态并输出报警信号,系统把各故障点相应的接触器、短路器等元件的辅助触电接到PLC,PLC扫描输入这些触电的状态,并通过PLC程序将这些状态存放在数据存储区,再结合控制程序和设备预置状态进行逻辑分析,判断设备或元件是否出了问题。

4 结束语
    可编程控制器(PLC)控制的汽车传动轴防尘罩高低温试验箱可以控制传动轴转动速度、调整其运行环境温度、实时监测试验箱内各种变量状态、灵活处理数据的通信,并将数据实时显示在计算机上,而且可以将所得的数据进行存储打印输出,以便后查。大大提高了系统的效率。




http://zhangqueena.b2b168.com

产品推荐