企业信息

    浔之漫智控技术(上海)有限公司

  • 7
  • 公司认证: 营业执照已认证
  • 企业性质:私营企业
    成立时间:2017
  • 公司地址: 上海市 松江区 永丰街道 上海市松江区广富林路4855弄52号3楼
  • 姓名: 聂航
  • 认证: 手机已认证 身份证已认证 微信未绑定

    西门子模块6GK7243-1EX01-0XE0大量现货

  • 所属行业:电气 工控电器 DCS/PLC系统
  • 发布日期:2023-07-27
  • 阅读量:46
  • 价格:面议
  • 产品规格:模块式
  • 产品数量:1000.00 台
  • 包装说明:全新
  • 发货地址:上海松江永丰  
  • 关键词:西门子代理商,西门子一级代理商

    西门子模块6GK7243-1EX01-0XE0大量现货详细内容

    西门子模块6GK7243-1EX01-0XE0大量现货


    1、可以在软件中进行自动整定;

    2、自动整定的PID参数可能对于系统来说不是较好的,就需要手动凭经验来进行整定。P参数过小,达到动态平衡的时间就会太长;P参数过大,就产生**调。

    PID功能块在梯形图(程序)中应当注意的问题:

    1、较好采用PID向导生成PID功能块;

    2、我要说一个较简单的也是较容易被人忽视的问题,那就是:PID功能块的使能控制只能采用SM0.0或任何1个存储器的常开触点并联该存储器的常闭触点这样的**断开的触点!

    笔者在以前的一个工程调试中就遇到这样的问题:PID功能块有时间动作正常,有时间动作不正常,而且不正常时发现PID功能块都没问题(PID参数正确、使能正确),就是没有输出。最后查了好久,突然意识到可能是使能的问题——我在使能端串联了启动/停止控制的保持继电器,我把它改为SM0.0以后,一切正常!

    同时也明白了PID功能块有时间动作正常,有时间动作不正常的原因:有时在灌入程序后保持继电器处于动作的状态才不会出现问题,一旦停止了设备就会出现问题——PID功能块使能一旦断开,工作就不会正常!

    把这个给大家说说,以免出现同样失误。

    下面是PID控制器参数整定的一般方法:

    PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。

    PID控制器参数整定的方法很多,概括起来有两大类:

    一是理论计算整定法。

    它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。

    二是工程整定方法。

    它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。

    但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。现在一般采用的是临界比例法。利用该方法进行PID控制器参数的整定步骤如下:

    (1)首先预选择一个足够短的采样周期让系统工作;

    (2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;

    (3)在一定的控制度下通过公式计算得到PID控制器的参数。

    PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。

    比例I/微分D=2,具体值可根据仪表定,再调整比例带P,P过头,到达稳定的时间长,P太短,会震荡,永远也打不到设定要求。

    PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:

    温度T:P=20~60%,T=180~600s,D=3-180s;

    压力P:P=30~70%,T=24~180s;

    液位L:P=20~80%,T=60~300s;

    流量L:P=40~**,T=6~60s。

    书上的常用口诀:

    参数整定找较佳,从小到大顺序查;

    先是比例后积分,最后再把微分加;

    曲线振荡很频繁,比例度盘要放大;

    曲线漂浮绕大湾,比例度盘往小扳;

    曲线偏离回复慢,积分时间往下降;

    曲线波动周期长,积分时间再加长;

    曲线振荡频率快,先把微分降下来;

    动差大来波动慢。微分时间应加长;

    理想曲线两个波,前高后低4比1;

    一看二调多分析,调节质量不会低。

    经过多年的工作经验,我个人认为PID参数的设置的大小,一方面是要根据控制对象的具体情况而定;另一方面是经验。P是解决幅值震荡,P大了会出现幅值震荡的幅度大,但震荡频率小,系统达到稳定时间长;I是解决动作响应的速度快慢的,I大了响应速度慢,反之则快;D是静态误差的,一般D设置都比较小,而且对系统影响比较小。对于温度控制系统P在5-10%之间;I在180-240s之间;D在30以下。对于压力控制系统P在30-60%之间;I在30-90s之间;D在30以下。

    这里介绍一种经验法。这种方法实质上是一种试凑法,它是在生产实践中总结出来的行之有效的方法,并在现场中得到了广泛的应用。

    这种方法的基本程序是先根据运行经验,确定一组调节器参数,并将系统投入闭环运行,然后人为地加入阶跃扰动(如改变调节器的给定值),观察被调量或调节器输出的阶跃响应曲线。若认为控制质量不满意,则根据各整定参数对控制过程的影响改变调节器参数。这样反复试验,直到满意为止。

    经验法简单可靠,但需要有一定现场运行经验,整定时易带有主观片面性。当采用PID调节器时,有多个整定参数,反复试凑的次数增多,不易得到较佳整定参数。

    下面以PID调节器为例,具体说明经验法的整定步骤:

    A.让调节器参数积分系数S0=0,实际微分系数k=0,控制系统投入闭环运行,由小到大改变比例系数S1,让扰动信号作阶跃变化,观察控制过程,直到获得满意的控制过程为止。

    B.取比例系数S1为当前的值乘以0.83,由小到大增加积分系数S0,同样让扰动信号作阶跃变化,直至求得满意的控制过程。

    C.积分系数S0保持不变,改变比例系数S1,观察控制过程有无改善,如有改善则继续调整,直到满意为止。否则,将原比例系数S1增大一些,再调整积分系数S0,力求改善控制过程。如此反复试凑,直到找到满意的比例系数S1和积分系数S0为止。

    D.引入适当的实际微分系数k和实际微分时间TD,此时可适当增大比例系数S1和积分系数S0。和前述步骤相同,微分时间的整定也需反复调整,直到控制过程满意为止。

    PID参数是根据控制对象的惯量来确定的。大惯量如:大烘房的温度控制,一般P可在10以上,I=3-10,D=1左右。小惯量如:一个小电机带一台水泵进行压力闭环控制,一般只用PI控制。P=1-10,I=0.1-1,D=0,这些要在现场调试时进行修正的。

    PID控制说明:

    在工程实际中,应用较为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

    当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术较为方便。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,较适合用PID控制技术。

    PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

    比例(P)控制:比例控制是一种较简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。

    积分(I)控制:在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。

    微分(D)控制:在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“**前”,即在误差接近零时,抑制误差的作用就应该是零。

    这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重**调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性

    目前,各种类型的可编程序控制器PLC一般集中安装在室或是生产现场,它们大都处在强 电电路和强电设备所形成的恶劣电磁环境中.所以,要提高PLC控制系统的可靠性,一是需要PLC生产厂家提高PLC硬件的抗干扰能力,二是需要工程设计人员充分利用PLC组态软件来干扰,这样才能有效地增强系统的抗干扰的性能.

    PLC控制系统由于具有功能强、程序设计简单、扩展性好、维护方便、可靠性高、能适应比较恶劣的工业环境的特点,因此在工业企业广泛应用.但是由于工业环境条件恶劣,以及各种工业电磁,辐射干扰等,影响PLC控制系统的正常工作,因此必须重视PLC控制系统的抗干扰设计.

    为防止干扰,可以采用硬件和软件相结合的抗干扰方法.防止硬件干扰的方法有:1采用性能优良的电源来抑制电网引入的干扰2电缆的选择与铺设来降低电磁干扰3完善接地系统4采用光电隔离来抑制输入输出电路引入的干扰等.而利用PLC软件来减少干扰是PLC控制系统正常、稳定工作的重要环节.下面主要分析在生产实践中应用的利用PLC组态软件来减少干扰的方法:

    一、减少数字量输入扰动的方法

    1、计数器法

    CON—计数器

    NOT—非门

    RS—复位**触发器

    IN—输入

    OUT—输出

    N—脉冲采样个数

    注释:当外部有信号输入时,控制系统采集连续的N个脉冲使RS触发器输出为“1”,只有当外部输入信号由“1”变成“0”时,RS触发器的复位端为“1”,将RS触发器的输出复位成“0”。而当有瞬间干扰脉冲时,CON计数器将采集不到连续的N个脉冲,CON计数器无法输出,这就起到了减少干扰的作用。(N一般情况下取2)

    优点:响应速度快,对周期性的瞬时干扰起到了一定的抑制作用。

    缺点:不能**过CON计数器采样时间的干扰。

    2、延迟输入法

    IN—输入

    OUT—输出

    TIME(ET)—延时时间

    TON—延时输出

    注释:当输入IN=1时,启动计数器直到计时时间(PT)=延时时间,OUT=1。当计数器计时时间〈延时时间,OUT=0。延时时间较好取1S以内。

    优点:了短时的周期干扰。

    缺点:响应速度慢,不利于信号的快速传输。

    二、减少模拟量输入扰动的方法

    1、限幅法

    MOVE—移动保持指令(使能端EN=1,OUT=IN。EN=0,OUT保持前次值)

    GE—大于等于指令(OUT=1,IFIN1≥IN2)

    LE—小于等于指令(OUT=1,IFIN1≤IN2)

    HL—上限设定值

    LL—下限设定值

    注释:当模拟量输入信号在HL和LL之间时,OUT=IN。当IN-AI信号**出或等于HL或LL时,GE或LE判断IN-AI信号,使OUT1或OUT2输出“1”去封锁MOVE,从而保持MOVE的输出为HL或LL的设定值。也就起到了限幅的作用。

    优点:能有效克服因偶然因素引起的脉冲干扰。

    缺点:平滑度差。

    2、延迟滤波限幅法

    MOVE—移动保持指令(使能端EN=1,OUT=IN。EN=0,OUT保持前次值)

    GE—大于等于指令(OUT=1,IFIN1≥IN2)

    LE—小于等于指令(OUT=1,IFIN1≤IN2)

    HL—上限设定值

    LL—下限设定值

    LG—延迟滤波指令

    TIME—延迟滤波时间

    注释:功能基本和限幅法相同,只是在输入端增加了一个延迟滤波器,对输入信号起到了延迟缓冲的滤波。

    优点:有效地抑制了周期性的脉冲干扰。平滑度比限幅法有所改善。

    缺点:信号响应速度减缓。

    3、延迟滤波比较法

    LG—延迟滤波器

    SUB—减法指令

    ABS—**值指令

    GE—大于等于指令

    HL—较大偏差值

    TIME—延迟滤波时间

    注释:正常情况输入信号IN-AI经过一阶延迟滤波后直接输出,OUT=IN-AI的值;当有突变信号时,输入信号IN-AI经过一阶延迟滤波后与含有突变信号的输入信号IN-AI相减取**值(无论出现正偏差还是负偏差),与HL值比较,若大于等于HL的预设值,OUT1=1,将LG—延迟滤波器切换成跟踪状态,此时OUT就保持了输入信号IN-AI突变前的值。直到突变信号减弱,OUT1=0,OUT=IN-AI。

    优点:对周期性干扰具有良好的抑制作用。平滑度高。

    缺点:灵敏度取决于TIME—延迟滤波时间的大小

    4、积分消抖滤波法

    LG—延迟滤波器

    SUB—减法指令

    GE—大于等于指令

    LE—小于等于指令

    OR—或门(自做的DFB功能块)

    NOT—非门

    TON—延时输出

    EOR—异或门

    MOV—移动保持指令

    PI—比例积分调节器

    HL—较大正向偏差值

    LL—较大负向偏差值

    TIME—延迟滤波时间

    TIME1—延迟输出时间

    TIME2—延迟滤波时间

    注释:参数设置:LG(TIME=1S),TON(TIME1=10S),LG1(TIME=30S),HL=0.2,LL=-0.2,PI(TI=10S,将P放开封锁成为纯积分调节器)

    一、小信号在变化幅度中变化时

    1、较终状态:此时为稳态,输入与输出相近。OR输出为“0”,NOT=1,TON时间已**出10S,EOR=0,MOV不保持,PI不积分,SUB=0,信号走PI的跟踪回路,LG1滤波后输出。正常的信号流向:IN→LG→PI的跟踪→LG1(滤波30S)→输出

    2、小信号的暂态变化:(在TON=10S之前)OR=0,NOT=1,TON未到10S,EOR=1,MOV保持,PI积分作用,LG1未起作用,输出跨越LG1(TIME=30S),直接到输出端,此时为线性跟踪滤波状态。

    二、信号大幅度变化时(≥HL,≤LL)

    OR=1,NOT=0,TON不起作用,EOR=0,所以LG1(TIME=30S)不起作用,PI不起作用走跟踪。正常的信号流向:IN→LG→PI的跟踪→LG1的跟踪→输出

    三、总结:

    1、小信号在10秒之内,经过LG(TIME=1S),PI的积分作用,跳过LG1(TIME=30S),直接输出,实现输入信号的滤波和跟踪状态。

    2、小信号在10秒之后,经过LG(TIME=1S),PI的跟踪和LG1(TIME=30S)跟踪输入。

    3、大信号变化时,LG(TIME=1S)作用,LG1(TIME=30S)不起作用,此时为输出快速跟踪。

    优点:对于被测参数有较好的滤波效果,对周期性干扰具有良好的抑制作用,平滑度高。

    缺点:对于变化缓慢的输入信号响应慢。

    结束语

    上述所分析的方法,均在生产实际中得到检验,取得了一定的效果,并随着生产实际的需要和经验的积累,不断完善其对干扰的软件处理方法。

    202207281244519172844.jpg202202231632210850864.jpg202202231632201798164.jpg




    http://zhangqueena.b2b168.com
    欢迎来到浔之漫智控技术(上海)有限公司网站, 具体地址是上海市松江区永丰街道上海市松江区广富林路4855弄52号3楼,联系人是聂航。 主要经营电气相关产品。 单位注册资金单位注册资金人民币 100 万元以下。 价格战,是很多行业都有过的恶性竞争,不少厂家为了在价格战役中获胜,不惜以牺牲产品质量为代价,而我们公司坚决杜绝价格战,坚持用优质的原材料及先进的技术确保产品质量,确保消费者的合法利益。