产品描述
6ES7235-0KD22-0XA8物优**
1 引言
目前,一般常见plc型号都没有集成现场总线can-bus的通讯功能接口,因而不便于基于can总线多台plc控制网络的实现。随着应用技术的发展,工业经常会出现需要n台plc协同完成一个系统的综合控制。此时,原有集中控制的单一plc控制方案就显得力所不及,plc网络的集成工程需求也应运而生。
本文提出了一种基于现场总线can-bus的plc网络方案,能够对多台联网的plc实现远程配置、数据通信,并能够在投入较低硬件成本的基础上,实现良好的系统运行性能。这个方案不仅充分发挥了现场总线can-bus的通信特点:实时、可靠、高速、远距离、易维护等,而且将现场总线技术与集中控制技术**结合,联网后的plc网络可以构成一个性能优越的dcs系统;用户在同一个主控制器(pc机)上可以远程监控、改变任何一台联网plc的程序或状态。
2 组建plc网络的两种方式
通用plc一般提供1~2个rs-232或rs-485通讯端口,用于与其他控制设备通讯;这些通讯端口支持有限的通讯协议,实现plc设备的通讯与配置。本项目利用plc自身的通讯端口,将其扩展成为能够与多台设备联网,实现基于现场总线can-bus多台plc网络。根据网络中主控制器的不同,plc网络分为以下方式:多台plc联网,各plc地位平等,可外扩hmi人机界面;多台plc联网,由1台工控pc作为主控制器与操作界面。本文重点讨论两种基于rs-232或rs-485通讯端口plc的组网方法。
2.1 plc串行联网
通过rs-232/rs-485转can-bus网关进行信号转换使plc具有can-bus通讯接口。多台具有can-bus通讯接口的plc之间相互连接,即可以组建plc网络。每台连接plc单元的rs-232/rs-485转can-bus网关都可以设定一个独立的设备id号,长度为11位或29位,用作为该plc单元的地址。
通过上述方式组建的plc网络,任何一台plc均可以主动发起数据通讯,由can-bus网关起硬件自动仲裁作用,**每一次通讯的数据不丢失;网络中的plc数量不受限制,数百、上千台plc都可以连接在同一现场总线can-bus网络中。同时,plc网络中可以连接具有can-bus通讯接口的hmi人机界面。
2.2 多台plc与工控pc并行联网
工控pc机内插pci-can板卡(如研华的pci1680、周立功的pci5110等),可以组建can-bus网络,通过连接在can-bus网络中的网关rs-232/rs-485转can-bus转换器,借助于can-bus网络配套的“虚拟串口”软件,建立多达2047个标准的串行通讯端口,从而连接多达2047条串行网络。即在一条普通双绞线上连接多达2047台plc设备,工控pc机访问连接在can-bus网络上的plc设备,与操作标准串口完全一致。这种方式可以充分发挥工控pc机的作用,通讯效率比较高,是一般plc网络建设的主流方向。本文采用此种方案组建plc网络。
3 plc网络的硬件组成与连接
建立plc网络,除了plc设备,还需要建立现场总线can-bus网络的设备,主要有rs-232转can-bus网关、pci-can接口卡等。
rs-232转can-bus转换器可以方便地连接到plc设备的rs-232标准通讯端口,使plc设备具有与现场总线can-bus网络通讯的能力。转换器通过modbus协议转换,可以支持不同通讯协议的plc设备。对于只集成rs-485/422通讯端口的plc设备,可以选择rs-485转can-bus转换器。rs-232转can转换器和rs-485转can转换器读者可以自行设计,也可以购买目前市场成熟的产品,如研华的亚当模块、周立功的智能转换模块等。
工控pc机内插pci-can接口卡,可以令工控pc机具有现场总线can-bus通讯接口,从而成为can-bus网络中的一个主要功能节点。根据与pc连接方式的不同,pc-can接口卡可以分为很多种不同的类型,常见的型号有pci-can接口卡、isa-can接口卡、pc104-can接口卡、usbcan接口卡、以太网转can接口卡等。
pci-can接口卡一般都提供有can-bus测试工具、api开发例程、opc服务器软件等。利用“虚拟串口服务器”软件可以开发基于串口通讯的软件项目,组建基于can总线的plc网络。
4 三菱-西门子can网络集成案例
4.1 原理设计
在某印染厂的印染控制系统中,有两台瑞士布赛5v型平网印花机、三台闽台奇正平网印花机、2台日本东升平网印花机以及2台两台德国的mbk圆网印花机,这些设备的主控制器是西门子的s7-200以及日本三菱的fx系列的plc。为了使印染厂的印染控制系统能够在一台上进行监控以及控制,单台plc进行现场设备信号的采集和控制,由于各个现场plc工作点距离较远远,工控机pc不可能实现每一台plc设备的单独电缆连接。因此,将各台plc设备通过现场总线can-bus网络连接,组建一个地区范围内的plc网络,从而实现plc远程维护、数据实时监控,既能够大大提高系统的管理效率,也可以有效地降低网络建设成本。
每台平网印花机plc设备集成有1个rs-4852串行通讯端口,通过can转rs-485转换器连接到现场总线can-bus网络。工控机pc内置1块pci-can接口卡,型号为pci-1680接口卡,可以使工控机成为can-bus网络中的节点,能够同时管理九台平网印花机。
plc串行通讯协议实现,不同厂家,plc的串行通讯协议不同,本就以本项目所用的s7-200为例说明其通讯方法。s7-200系列plc配有rs-485标准串行接口,可实现下列四种网络的连接:
(1) simatic s7-200网络(ppi协议);
(2) 用户可编程接口协议(自由口模式)采用可编程自由口通信模式(free port mode);
(3) profibus-dp网络。
4.2 系统通讯
本项目采用自由口通讯的模式,与自由口模式有关的特殊寄存器及相关的位:
(1) 控制字寄存器smb30:s7-200plc的通信模式由smb30设置,当mm=01时plc工作于自由口模式。
(2) 通信接收字符缓冲器smb2:smb2是一个暂态寄存器,用于存放在自由口通信方式下接收到的当前字符,用户在下一步应从这里取走其中的内容,通过编程控制将接收到的字符一个一个由smb2移入接收缓冲区。
(3) 通信校验结果标志位smb3.0:plc按smb30规定的奇偶校验方式对所接收到的数据作校验。如果校验有错,plc自动将smb3.0置1,sm3.0=0表示奇偶校验正确。根据这个标志,可决定对当前信息的取舍,还可以在出错的情况下,将此错误位发送给对方,以便要求它重发。
(4) 工作方式标志位sm0.7:s7-200系列plc只有处于运行(run)方式时才能进行自由口模式通信,而在停止(stop) 方式时只能以ppi模式通信。当plc处于run方式时sm0.7=1,否则sm0.7=0,因此可通过判断sm0.7的状态来打开或关闭自由口通信。
(5) 发送器空标志sm4.5及收发指令:s7-200plc有专门的发送指令:xmt table port table为发送数据的字节数即数据长度,较大为225;port*通信口,自由口模式下必须为0。当正发送数据信息时,特殊存储器位sm4.5=0,当发送完成后,sm4.5=1,因此可通过判断sm4.5的状态来进行发送后处理,也可直接用发送中断来处理。cpu215 cpu216还提供了接收控制指令:rcv table port与smb86 smb94 smb 186 smb 194寄存器配合,用以改变(初始化或终止)接收信息。
plc串行通讯程序执行时,在每一个扫描周期的开始,都要检查sm0.7的状态,若plc处于run方式即sm0.7=1,则打开自由口模式并设置其它相关的波特率、奇偶校验等参数,否则置自由口模式无效。
可编程控制器,英文称ProgrammableLogicController,简称PLC。PLC是基于电子计算机,且适用于工业现场工作的电控制器。它源于继电控制装置,但它不像继电装置那样,通过电路的物理过程实现控制,而主要靠运行存储于PLC内存中的程序,进行入出信息变换实现控制。
PLC基于电子计算机,但并不等同于普通计算机。普遍计算机进行入出信息变换,多只考虑信息本身,信息的入出,只要人机界面好就可以了。而PLC则还要考虑信息入出的可靠性、实时性,以及信息的使用等问题。特别要考虑怎么适应于工业环境,如便于安装,抗干扰等问题。
1.1实现控制要点
输入输出信息变换、可靠物理实现,可以说是PLC实现控制的两个基本要点。
输入输出信息变换靠运行存储于PLC内存中的程序实现。PLC程序既有生产厂家的系统程序(不可更改),又有用户自行开发的应用(用户)程序。系统程序提供运行平台,同时,还为PLC程序可靠运行及信号与信息转换进行必要的公共处理。用户程序由用户按控制要求设计。什么样的控制要求,就应有什么样的用户程序。
可靠物理实现主要靠输人(bbbbb)及输出(OUTPUT)电路。PLC的I/O电路,都是专门设计的。输入电路要对输入信号进行滤波,以去掉高频干扰。而且与内部计算机电路在电上是隔离的,靠光耦元件建立联系。输出电路内外也是电隔离的,靠光耦元件或输出继电器建立联系。输出电路还要进行功率放大,以足以带动一般的工业控制元器件,如电磁阀、接触器等等。
I/O电路是很多的,每一输入点或输出点都要有一个I或O电路。PLC有多I/O用点,一般也就有多少个I/O用电路。但由于它们都是由高度集成化的电路组成的,所以,所占体积并不大。
输入电路时刻监视着输入状况,并将其暂存于输入暂存器中。每一输入点都有一个对应的存储其信息的暂存器。
输出电路要把输出锁存器的信息传送给输出点。输出锁存器与输出点也是一一对应的
这里的输入暂存器及输出锁存器实际就是PLC处理器I/O口的寄存器。它们与计算机内存交换信息通过计算机总线,并主要由运行系统程序实现。把输人暂存器的信息读到PLC的内存中,称输入刷新。PLC内存有专门开辟的存放输入信息的映射区。这个区的每一对应位(bit)称之为输入继电器,或称软接点。这些位置成1,表示接点通,置成0为接点断。由于它的状态是由输入刷新得到的,所以,它反映的就是输入状态。
输出锁存器与PLC内存中的输出映射区也是对应的。一个输出锁存器也有一个内存位(bit)与其对应,这个位称为输出继电器,或称输出线圈。靠运行系统程序,输出继电器的状态映射到输出锁存器。这个映射也称输出刷新。输出刷新主要也是靠运行系统程序实现的。这样,用户所要编的程序只是,内存中输入映射区到输出映射区的变换,特别是怎么按输入的时序变换成输出的时序。这是一个数据及逻辑处理问题。由于PLC有强大的指令系统,编写出满足这个要求的程序是完全可能的,而且也是较为容易的。
1.2实现控制过程
简单地说,PLC实现控制的过程一般是:
图1.1 PLC典型开机流程
输入刷新--再运行用户程序--再输出刷新--再输入刷新--再运行用户程序--再输出刷新……**停止地循环反复地进行着。
图1.1所示的流程图反映的就是上述过程。它也反映了信息的时间关系。
有了上述过程,用PLC实现控制显然是可能的。因为:有了输入刷新,可把输入电路监控得到的输入信息存入PLC的输入映射区;经运行用户程序,输出映射区将得到变换后的信息;再经输出刷新,输出锁存器将反映输出映射区的状态,并通过输出电路产生相应的输出。又由于这个过程是**停止地循环反复地进行着,所以,输出总是反映输入的变化的。只是响应的时间上,略有滞后。当然,这个滞后不宜太大,否则,所实现的控制不那么及时,也就失去控制的意义。
为此,PLC的工作速度要。速度快、执行指令时间短,是PLC实现控制的基础。事实上,它的速度是很快的,执行一条指令,多的几微秒、几十微秒,少的才零点几,或零点零几微秒。而且这个速度还在不断提高中。
图1.1所示的过程是简化的过程,实际的PLC工作过程还要复杂些。除了I/O刷新及运行用户程序,还要做些公共处理工作。
公共处理工作有:循环时间监控、外设服务及通讯处理等。
监控循环时间的目的是避免"死循环",避免程序不能反复不断地重复执行。办法是用"看门狗"(Watchingdog)。只要循环**时,它可报警,或作相应处理.
外设服务是让PLC可接受编程器对它的操作,或通过接口向输出设备如打印机输出数据.
通讯处理是实现PLC与PLC,或PLC与计算机,或PLC与其它工业控制装置或智能部件间信息交换的。这也是增强PLC控制能力的需要。
也就是说,实际的PLC工作过程总是:公共处理--I/O刷新--运行用户程序--再公共处理--……反复不停地重复着。
1.3可编程控制器实现控制的方式
用这种不断地重复运行程序实现控制称扫描方式。是用计算机进行实时控制的一种方式。此外,计算机用于控制还有中断方式。在中断方式下,需处理的控制先申请中断,被响应后正运行的程序停止运行,转而去处理中断工作(运行有关中断服务程序)。待处理完中断,又返回运行原来程序。哪个控制需要处理,哪个就去申请中断。哪个不需处理,将不被理睬。显然,中断方式与扫描方式是不同的。
在中断方式下,计算机能得到充分利用,紧急的任务也能得到及时处理。但是,如果同时来了几个都要处理的任务该怎么办呢?**级高的还好办,低的呢?可能会出现照顾不到之处。所以,中断方式不大适合于工作现场的日常使用。
但是,PLC在用扫描方式为主的情况下,也不排斥中断方式。即,大量控制都用扫描方式,个别急需的处理,允许中断这个扫描运行的程序,转而去处理它。这样,可做到所有的控制都能照顾到,个别应急的也能进行处理。
PLC的实际工作过程比这里讲的还要复杂一些,分析其基本原理,也还有一些理论问题。有关人员如果能把上面介绍的入出变换、物理实现--信息处理、I/O电路--空间、时间关系--扫描方式并辅以中断方式,作为一种思路加以研究,弄清了它,也就好理解PLC是怎样去实现控制的,也就好把握住PLC基本原理的要点了。
在发达的工业国家,PLC已经广泛地应用在所有的工业部门,随着其性能价格比的不断提高,应用范围不断扩大,主要有以下几个方面:
1.开关量逻辑控制
PLC具有“与”、“或”、“非”等逻辑指令,可以实现触点和电路的串、并联,代替继电器进行组合逻辑控制、定时控制与顺序逻辑控制。开关量逻辑控制可以用于单台设备,也可以用于自动生产线,其应用领域已遍及各行各业,甚至深入到家庭。
2.运动控制
PLC使用**的指令或运动控制模块,对直线运动或圆周运动的位置、速度和加速度进行控制,可实现单轴、双轴、3轴和多轴位置控制,使运动控制与顺序控制功能**地结合在一起。PLC的运动控制功能广泛地用于各种机械,如金属切削机床、金属成形机械、装配机械、机器人、电梯等场合。
3.闭环过程控制
过程控制是指对温度、压力、流量等连续变化的模拟量的闭环控制。PLC通过模拟量I/O模块,实现模拟量(Analog)和数字量(Digital)之间的A/D转换与D/A转换,并对模拟量实行闭环PID(比例-积分-微分)控制。现代的大中型PLC一般都有PID闭环控制功能,这一功能可以用PID子程序或**的PID模块来实现。其PID闭环控制功能已经广泛地应用于塑料挤压成形机、加热炉、热处理炉、锅炉等设备,以及轻工、化工、机械、冶金、电力、建材等行业。
4.数据处理
现代的PLC具有数学运算(包括四则运算、矩阵运算、函数运算、字逻辑运算、求反、循环、移位和浮点数运算等)、数据传送、转换、排序和查表、位操作等功能,可以完成数据的采集、分析和处理。这些数据可以与储存在存储器中的参考值比较,也可以用通信功能传送到别的智能装置,或者将它们打印制表。
5.通信联网
PLC的通信包括主机与远程I/O之间的通信、多台PLC之间的通信、PLC与其他智能控制设备(如计算机、变频器、数控装置)之间的通信。PLC与其他智能控制设备一起,可以组成“集中管理、分散控制”的分布式控制系统。
必须指出,并不是所有的PLC都有上述全部功能,有些小型PLC只有上述的部分功能,但是价格较低。
可编程控制器是60年代末在美国首先出现,当时叫可编程逻辑控制器PLC(Programmable Logic Controller),目的是用来取代继电器,以执行逻辑判断、计时、计数等顺序控制功能。PLC的基本设计思想是把计算机功能完善、灵活、通用等优点和继电器控制系统的简单易懂、操作方便、价格便宜等优点结合起来,控制器的硬件是标准的、通用的。根据实际应用对象,将控制内容编成软件写入控制器的用户程序存储器内。控制器和被控对象连接方便。
随着半导体技术,尤其是微处理器和微型计算机技术的发展,到70年代中期以后,PLC已广泛地使用微处理器作为*处理器,输入输出模块和外围电路也都采用了中、大规模甚至**大规模的集成电路,这时的PLC已不再是逻辑判断功能,还同时具有数据处理、PID调节和数据通信功能。
可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用了可编程序的存储器,用来在其内部存储执行逻辑运算,顺序控制、定时、计算和算术运算等操作的指令,并通过数字式和模拟式的输入输出,控制各种类型的机械或生产过程。PLC是微机技术与传统的继电接触控制技术相结合的产物,它克服了继电接触控制系统中机械触点的接线复杂、可靠性低、功耗高、通用性和灵活性差的缺点,充分利用微处理器的优点。
可编程控制器对用户来说,是一种无触点设备,改变程序即可改变生产工艺,因此可在初步设计阶段选用可编程控制器,在实施阶段再确定工艺过程。另一方面,从制造生产可编程控制器的厂商角度看,在制造阶段不需要根据用户的订货要求专门设计控制器,适合批量生产。由于这些特点,可编程控制器问世以后很快受到工业控制界的欢迎,并得到迅速的发展。目前,可编程控制器已成为工厂自动化的强有力工具,得到了广泛的应用。
产品推荐