产品描述
6ES7216-2BD23-0XB8选型说明
1 背景
沧州炼油厂炼油三部沥青车间现有年产十万吨道路沥青装置一套,车间配套有装车用桥式起重机两台,该桥式起重机是张家口起重机厂1979年10月生产,我厂1980年4月投用,经过20多年的使用,该设备已经非常陈旧,且随着近几年产量的增加,起重机使用频率增加,天车故障频发,沥青桥式起重机(又称天车)的电气维护一直是我们日常维护的一项重要工作,往往投入了大量的人力物力,还不能保证天车的正常使用,每年都消耗大量的材料费用。为解决该问题,2004年4月份我们组织了技术人员进行了QC攻关,经过比较决定采用施耐德公司生产的Modicon TSX Neza PLC,代替原电路中的JT3-11/1时间继电器,改造后,经过两年的使用,效果良好。
2 控制电路的分析与改造
在桥式起重机电路中,故障发生比较多的是抓斗提升、张合部分的控制电路。抓斗提升、张合主电路
KM11、KM33、KM22、KM44分别是控制抓斗提升、张合的主接触器,KM1~KM6是切除电阻的接触器,KT1~KT6是时间继电器,时间继电器的作用是分级延时接触启动电阻,由于动作频繁所以故障频发。我们通过分析可以看出:
(1) 由于时间继电器的型号是JT3-11/1-110V,因此工作回路是一个半波整流降压回路,要使JT3-11/1正常工作,该回路中的二极管、降压电阻、接触器辅助接点均应可靠工作;
(2) JT3-11/1型号的时间继电器的辅助接点导致电气故障经常发生的一个主要点,如机构故障、接点接触不良故障,检修起来非常烦琐;
(3) JT3-11/1的线圈本身也经常出现短路和断路故障;另外,在这部分控制电路中,切除电阻的接触器和时间继电器辅助触点相互控制,互为因果,电路比较复杂。我们通过以析可以看出:无论哪一点出问题,都会导致抓斗电动机直接起动,使电机的起动转矩大大下降,如果发现不及时,较易烧坏电机。
施耐德公司生产的Modicon TSX Neza PLC功能比较丰富,容易使用且工作可靠,CPU单元具有12点输入和8点输出的20点I/O的基本结构,可根据需要较多连接3个扩展模块扩展至80个I/O点。根据原电路要求,笔者用两个Modicon TSX Neza PLC更换了6个时间继电器,用PLC的输出节点对KM1~KM6接触器进行控制。
由于Modicon TSX Neza PLC一接通电源就运行其中的程序,因此通过抓斗主接触器来控制Neza PLC是否运行。我们对Neza PLC进行了编程,使其输出节点依据设定的延时时间依次导通,达到原电路的动作要求。考虑到Neza PLC的安全运行,实测了接触器(CJ12-100)线圈的实际工作电流是0.7A,为了防止线圈烧毁而损坏继电器的输出接点,该接点的额定电流是2A,在输出回路中串联了一个2A的保险管,**该回路的接点不致被损坏。
3 抗干扰措施
由于PLC的安装地点是在桥式起重机的电气控制箱上,处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力;另一方面,要求工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。
3.1 采用性能优良的电源,抑制电网引入的干扰
在PLC控制系统中,电源占有较重要的地位。电网干扰窜入PLC控制系统主要通过PLC系统的供电电源(如CPU 电源、I/O电源)等进入的。对于给PLC系统供电的电源,必须采用隔离性能较好电源。
3.2 电缆选择的铺设
为了减少动力电缆辐射的电磁干扰,我们选用了屏蔽电缆。在工程中,采用铜带铠装屏蔽电力电缆,可以大大降低动力线产生的电磁干扰,使工程取得满意的效果。
不同类型的信号分别由不同电缆传输,信号电缆应按传输信号种类分层铺设,严禁用同一电缆的不同导线同时传送动力电源和信号;避免信号线与动力电缆靠行铺设,以减少电磁干扰。
PLC(可编程序控制器)是以微处理器为核心,综合了计算机技术、自动控制技术和通信技术而发展起来的一种通用工业自动控制装置。具有控制功能强,可靠性高,使用灵活方便,易于扩展等优点而应用越来越广泛。在冶金、交通、化工、电力等领域获得了广泛的应用,被成为现代工业技术的三大支柱之一。
高可靠性是电气控制设备的关键性能。PLC由于采用现代大规模集成电路技术,采用严格的生产工艺制造,内部电路采取了先进的抗干扰技术,具有很高的可靠性。故障也就大大降低。尽管PLC在设计制造时已采取了很多措施,使它对工业环境比较适应,但是为了确保整个系统稳定可靠,还是应当尽量使PLC有良好的工作环境条件,并采取必要的抗干扰措施。
1 PLC控制系统干扰的主要来源及途径
1.1电源的干扰。
PLC系统控制的正常供电电源均由电网供电。由于电网覆盖范围广,它将受到所有空间电磁干扰,空间的辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达等产生的,通常称为辐射干扰,若PLC系统置于所射频场内,就会收到辐射干扰,而在线路上感应电压。尤其是电网内部的变化,开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。可能造成程序错误或运算错误,从而产生误输入并引起误输出,这将会造成设备的失控和误动作,从而不能保证PLC的正常运行。
1.2信号线引入的干扰。
与PLC控制系统连接的各类信号传输线,除了传输有效的各类信号之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器或共用信号仪表的供电电源串入的电网干扰;二是信号线受空间电磁辐射感应的干扰,由此引起系统故障的情况也很多。
1.3接地系统的干扰。
接地是提高电子设备电磁兼容性(EMC)的有效手段之一。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统将无法正常工作。
1.4变频器干扰。
一是变频器启动及运行过程中产生谐波对电网产生传导干扰,引起电网电压畸变,影响电网的供电质量;二是变频器的输出会产生较强的电磁辐射干扰,影响周边设备的正常工作。
2 抗干扰的措施
2.1 电源干扰的抑制。
一般通过设置屏蔽电缆和PLC局部屏蔽及高压泄放元件进行保护。选用隔离性能较好的设备、选用优良的电源、动力线和信号线走线要更加合理等等,对电源变压器、*处理器、编程器等主要部件,采用导电、导磁性良好的材料进行屏蔽处理,以防止外界干扰信号的影响。电源调整与保护:电源波动造成电压畸变或毛刺,将对PLC及I/O模块产生不良影响。对微处理器核心部件所需要的+5V电源采用多级滤波处理,并用集成电压调整器进行调整,以适应交流电网的波动和过电压、欠电压的影响。尽量时电源线平行走线,时电源线对地呈低阻抗,以减少电源噪声干扰。其屏蔽层接地方式不同,对干扰抑制效果不一样,一般次级线圈不能接地。输入、输出线应用双绞线且屏蔽层应可靠接地,以抑制共摸干扰。此外可以安装一台带屏蔽层的变比为1:1的隔离变压器,以减少设备与地之间的干扰,还可以在电源输入端串接LC滤波电路等。
2.2 信号线引入的防干扰措施。
动力线、控制线以及PLC的电源线和I/O线应分别配线,隔离变压器与PLC和I/O之间应采用双绞线连接。将PLC的I/O线和大功率线分开走线,如必须在同*槽内,分开捆扎交流线、直流线,若条件允许,分槽走线较好,这不仅能使其有尽可能大的空间距离,并能将干扰降到较低限度。此外利用信号隔离器解决干扰问题也是很理想的办法,其原理是首先将PLC接收的信号,通过半导体器件调制变换,然后通过光感或磁感器件进行隔离转换,然后再进行解调变换回隔离前原信号或不同信号,同时对隔离后信号的供电电源进行隔离处理。保证变换后的信号、电源、地之间**独立。只要在有干扰的地方,输入端和输出端中间加上这种隔离器,就可有效解决干扰问题。
2.3 正确选择接地点,完善接地系统。
良好的接地是保PLC可靠工作的重要条件,可以避免偶然发生的电压冲击危害。接地的目的通常有两个,其一为了安全,其二是为了抑制干扰。完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。在PLC控制系统中,具有多种形式的“接地”,主要有:
(1)信号地。输入端信号元件的地;
(2)交流地。交流供电电源的N线;
(3)屏蔽地。为防止静电和磁场感应而设置的外壳或金属丝网,通过专门的铜导线将其接入地下;
(4)保护地。将机器设备的外壳或设备内独立器件的外壳接地,用于保护人身安全和防止设备漏电。
为了抑制附加在电源及输入、输出端的干扰,应对PLC系统进行良好的接地。一般情况下,接地方式与信号频率有关,当频率低于1MHz时,可用一点接地;**10MHz时,采用多点接地;在1~10MH之间时,通常情况下,PLC控制系统采用一点接地,将所有地线端子和较近接地点相连接,以获得较好的抗干扰能力。接地线截面积不能小于2mm2,接地电阻不能大于100Ω,接地线使用**地线。
2.4变频器干扰的抑制。
(1)加隔离变压器,主要是针对来自电源的传导干扰,可以将绝大部分的传导干扰阻隔在隔离变压器之前。
(2)使用滤波器,滤波器具有较强的抗干扰能力,还具有防止将设备本身的干扰传导给电源,有些还兼有尖峰电压吸收功能。
(3)使用输出电抗器,在变频器到电动机之间增加交流电抗器主要是减少变频器输出在能量传输过程中线路产生电磁辐射,影响其它设备正常。
3 结论
PLC控制系统中的干扰是一个十分复杂的问题,因此在抗干扰设计中应综合考虑各方面的因素,合理有效地抑制抗干扰,才能够使PLC控制系统正常工作。随着PLC应用领域的不断拓宽,如何可靠的使用PLC也成为其发展的重要因素。在不久的将来,PLC会有更大的发展,产品的品种会更丰富、规格更齐全,通过**的人机界面、完备的通信设备会更好地适应各种工业控制场合的需求,PLC作为自动化控制网络和通用网络的重要组成部分,将在工业控制领域发挥越来越大的作用。
在当前的工业生产过程控制中,普遍采用了PLC控制系统,通过软件程序来实现控制设备之间的联锁控制也就是自动控制,由控制设备驱动的工厂机械设备来完成满足工艺要求的生产过程。这里,设备的运行分为单体手动操作和自动控制运行两种方式。在单体手动操作中,一般是在设备就地(机旁)操作。PLC的程序控制主要是进行自动控制,但其中也包括单体手动操作,其完成的功能和就地(机旁)操作是一样的,不同之处在于,它是通过程序的方式来实现,并且一般是在上位机的监控画面中通过点击鼠标的方式进行,也就是在机房或控制室中进行而不是就地(机旁)。手动操作(包括程序中的手动单体操作)和自动控制程序的主要区别在于,自动控制程序是在正式投产后,各个设备没有故障可正常工作时运行。而手动操作是在调试期间用于俗称的“打点”时用,或正常运行时,有设备出现故障时用。例如,某供水水箱的液位控制,水位高时,启动出水泵供水,水位低时,停止泵供水,如水箱的液位传感器出现故障,自动控制就无法进行,那么为了继续维持生产,就需要操作人员现场手动操作,根据水箱的液位指示器来手动启动和停止出水泵的运行及相应阀门的开关。需要指出的是,本文所指的设备是PLC输出控制的开关量设备,模拟量设备不在本文的讨论之列。
设备手动和自动切换的方式
在本文中,设备是指工厂机械设备及其控制设备。控制设备是指电机,阀门等等,而设备的手动和自动运行,主要体现在控制设备的手动和自动运行。例如,对于电机的控制一般是通过MCC(电机控制中心)电气控制系统来进行的,电机的远程和就地信号,即自动和手动的切换信号,以及启动、停止、故障等信号均由MCC提供并接到PLC硬件系统。在MCC柜上的远程就地转换开关打到就地时,进行就地手动操作;打到远程时,进行PLC的程序自动控制,或在上位机画面上进行点击鼠标式的手动操作。我们可以这样来理解PLC控制系统、就地电气控制系统、控制设备和工厂机械设备之间的关系,即自动控制(包括PLC程序中的手动操作)是由PLC控制系统通过电气控制系统,由电气控制系统来控制像电机一样的控制设备,最后由控制设备来驱动工厂机械设备的运行。而电气控制系统像MCC柜本身,就可以直接进行手动就地操作。
对于电机的控制来说,正常运行时,首先是PLC程序的自动控制,此时的远程就地转换开关处于远程的位置,然后如果出现PLC无法处理的问题或故障,则需要在上位机的画面上,人工进行单体设备的操作,以维持生产或进行安全联锁操作。最后如果依然不能解决问题,则需要在就地(机旁)进行操作,一般是进行电机停止的操作。
对于阀门来说,一般也有相应的电气控制系统,就像MCC一样,其一般是就地的现场电磁阀控制柜(箱),一般都有远程就地的转换开关,用于手动和自动运行的切换。和电机控制一样,正常运行时,首先是PLC的自动控制,此时的远程就地的转换开关处于远程的位置,然后如果出现PLC无法处理的问题或故障,则需要在上位机的画面上,人工进行单体设备的操作,以维持生产或进行安全联锁操作。最后如果依然不能解决问题,远程就地转换开关打到就地位置,进行现场的就地控制。如果还不能解决问题,则只能使用手动阀门进行安全操作。
显然,就地手动和远程自动运行,是通过就地控制柜(箱)上的转换开关来实现的。PLC程序中的手动和自动的切换功能,也可以这样做,在程序中实现类似于转换开关这样的操作是没有问题的。
设备手动和自动切换的程序实现方法1
当远程就地信号为1时,即表示现场的控制柜(箱)上的转换开关打到了远程位置,可进行PLC的自动控制;当其为0时,则表示是现场手动操作。为了实现程序内部的手动自动切换,就像远程就地信号一样,设置一个中间变量,这个中间变量作为程序手动单体设备操作的标志,是由上位机监控程序来赋值的,其值为1时,进行程序的单体设备手动操作;为0时PLC程序进行自动控制。由此可见,每一个自动控制中的设备都是在这两个条件下运行的。
其中(L)为置位指令,(U)为复位指令。这里之所以用置位、复位指令,主要是考虑到启动(打开)条件和停止(关闭)条件可能是脉冲型的(例如上升沿脉冲),需要保持(注:如果MCC中的控制回路使用了“启动-保持-停止”方式,那么采用脉冲输出比较合适,就像自复位式按钮一样。这里为了简化梯形图程序,没有这样做。有兴趣的读者不妨一试)。电机启动或停止条件是自动控制时的联锁条件,上位机进行手动操作时,自动控制程序不能执行。同样就地操作时,PLC的程序控制也不能执行,程序可以根据需要将此时的电机启动和停止控制信号复位。阀门的控制也是一样。这样各个设备均可根据情况进行自动运行或手动操作。
设备手动和自动切换的程序实现方法2
上面的方法对手自动切换时的各种情况都进行了考虑,程序进行设计时需要时时刻刻注意手自动切换问题,程序量相对于没有手自动切换时也有所增加。如果把程序中的手动程序同自动程序分开,程序就会显得更加清晰明了,同时设计自动程序时也不必时时刻刻注意手自动切换问题。这样是否可行呢?我们不妨将上面的梯形图程序改造成如图2所示。
显然,这是可行的,由于手动程序最后执行,电机或阀门的启动、停止或打开、关闭,由手动程序决定。也就是说,当自动控制程序运行时,如果有上位机手动操作,则上位机手动操作**。例如当自动程序要求电机停止时,如果上位机手动操作让其启动,则电机启动。其中的原因是,程序对相同变量或IO标签的赋值操作,最后执行的程序有效。
产品推荐