产品描述
西门子模块6ES7232-0HD22-0XA0参数设置
1 引言
西门子工控产品在工控领域应用市场中有较高的占有率,S7—200系列PLC是西门子SIMATIC PLC家族中的成员之一,在西门子工控领域应用中占有重要地位。S7—200系列PLC体积小,软硬件功能强大,系统配置方便,由它组成的系统可以与强大的Profibus现场总线相连接。它一推向市场就在各行各业得到了广泛应用。但是在实际工程应用中遇到了监控计算机与S7—200系列PLC通信问题。由于西门子公司S7—200系列PLC比监控组态软件WinCC推出晚,因此WinCC中没有集成S7—200系列PLC的通信驱动程序;S7—200系列PLC的通信协议也不公开.应用第三方软件编制监控程序也有问题。这些问题给S7—200系列PLC的应用带来了一定的限制,为了解决这个实际工程问题,作者做了一些研究,本文就S7—200系列PLC与监控计算机通信问题研究结果展开讨论。
2 S7—200系列PLC监控的主要方法
在大多数控制系统中,仅仅是实现控制是不够的,在许多情况下也需要组态监控界面对系统进行监控。通过监控可以增机交互的能力,使操作人员实时地监控系统工作情况并使系统操作变得方便。
对S7—200系列PLC组成的控制系统进行监控一般有三种方法:组态软件、第三方软件编制的软件、触摸屏监控。
用组态软件WinCC实现监控,功能强大,灵活性好,可靠性高。但软件价格高,并需要解决WinCC与S7—200系列PLC的通信问题。在复杂控制系统中可以采用此方法。
用第三方软件编制的软件实现监控,灵活性好,系统投资低,能适用于各种系统。但开发系统工作量大、可靠性难保,对技术人员的经验和技术水平的要求高,还必须购买通信协议软件。在系统资金投资有限,技术人员水平较高的情况下可以采用此方法。
触摸屏进行监控,可靠性高,监控实现容易,触摸屏与PLC之间的通信问题生产厂商已处理好.用户不用考虑通信问题,可以大大缩短工程周期。但灵活性一般,功能有限,不能满足复杂控制系统的监控要求.而且价格高。在系统可靠性要求高、工期短的情况下可以采用此方法。
3 WinCC组态软件与S7—200系列PLC的通信
SIMATIC WinCC采用了较新的32位技术的过程软件,具有良好的开放性和灵活性。无论是单用户系统,还是冗余多服务器,多用户系统。WinCC均是较好选择。通过ActiveX,OPC,SQL等标准接口.WinCC可以方便地与其它软件进行通信。WinCC与S7—200系列PLC的通信.可以采用PPI和Profibus两种通信协议之一进行。
1、WinCC与S7—200系列PLC通过Proilbus 协议进行通信的实现
(1)软硬件要求:
*PC机,bbbbbbs 98操作系统:
*S7—200系列PLC;
*CP5412板卡或者其他同类板卡,例如:CP5611,CP5613;
*EM277 Profibus DP模块:
*Profibus电缆及接头;
*安装CP5412板卡的驱动;
*安装WinCC 4. 0或以上版本:
*安装COM Profibus软件。
硬件连接如图1。
监控计算机:DP主站,地址为1
(2)组态
打开SIMATIC NET\COM Pmfibus,新加一个组态,主站为SOFTNET—DP,从站是EM277 Profihus—DP。主站的地址选择从1到126。从站的地址选择从3到99,与EM277的地址一致。然后用该软件对从站进行配置:打开从站属性,在Configure选项中,选择8bytes in/8bytes out(可根据实际需要选定)。在bbbbbeterize中可以选择偏移地址.地址对应于S7—200系列PLC的数据区(即V区),默认为0,即从VBO开始。组态完成后,导出(Export)NCM文件,生成*.txt和*.ldb文件。
(3)设置PG/PC interface。
在AccessPoint of the Application中选择CP-L2_1,在Interface bbbbbeter Assignment选择CP5412A2(Profibus)。在属性里的DP协议,并在DP-Database参数中输入*jdb文件的完全路径。设置完成后可以诊断硬件配置是否正确、通信是否成功。
(4)WinCC的设置。
在WinCC变量管理器中添加一个新的驱动程序,新的驱动程序选择PROFIBUS DPCHN。选择CP5412(A2)Board 1.在Syatem bbbbbeters设定参数。CP5412(A2)board参数为1.表示板卡的编号;Config参数为组态时生成的*.1xt文件的完全路径;Watchdog time参数为0。新建一个连接.从站地址与EM277的地址一致。
(5)建立变量。
WinCC中的变量类型有In和Out。In和Out是相对于主站来说的.即In表示WinCC从S7—200系列PLC读入数据,Out表示WinCC向s7—200系列PLC写出数据。In和Out与数据存储区V区划应。在该例中,Out与PLC中数据存储区的VB0~VB7对应,1n与PLC中的存储区的VB8~VBl5对应。
(6)优缺点。
优点:该方法速度快、易扩展、实时性好。缺点:传送数据区域有限(较大“字节),在PLC中也必须进行相应的处理.且硬件成本高.需要的CP5412、EM277 Profibus—DP、Profibu9总线等硬件.还需要Com Pmfibus软件。应用场合:适用于在要求高速数据通信和实时性要求高的系统。
2、WinCC与S7-200系列PLC通过PPI协泌进行通信实现。
PPI协议是西门子S7—200系列PLC常用通信协议,但WinCC中没有集成该协议,即WinCC不能直接监控S7—200系列PLC组成的控制系统。S7—200 OPC Server是西门子公司推出的专为解决上位机监控S7—200系列PLC控制系统的接口软件。因此.WinCC可以通过该软件与S7—200系列PLC很方便的建立通信。
(1)软硬件要求:
*PC机,bbbbbbs 98操作系统;
*S7—200系列PLC。
*PC/PPI电缆。
*安装S7—200 OPC Server软件。
*安装WinCC 4.0软件。
(2)连接:
在控制面板中设定PG/PC接口参数。在Access Point of the Application中选择Computing,Interface参数选择PC/PPI Cable。
在WinCC变量管理器中添加个新的驱动程序。新的驱动程序选择OPC CHN,在OPC GROUP中新建一个连接,打开属性,选择OPC Group Setting,OPC服务器名称为OPCServerMicroComputing。然后在新添加的连接中新建变量.变量的Item Name与s7—200系列PLC中用于监控的变量名对应:例如:Item Name为M00。
(3)优缺点
优点:该方法连接简单、硬件投资少、可以读写S7—200系列PLC中所有存储区域。缺点:通信速度比较慢、需要OPC软件及相应授权、系统扩展不方便。应用场合:用于低速、实时性要求不高、系统投资资金有限的系统。
另外,也可以通过其他公司的OPC软件进行通信.例如用开普的KEPServerEx作为OPC服务器.用WinCC作为OPC客户端来读写S7—200系列PLC内部数据区。实现与上述*二种系列PLC中存储地址对应。
在复杂系统中,如果系统中同时有S7—200系列PLC和B7-300系列PLC存在。S7—200系列PLC一般作为S7—300系列PLC的从站挂到Profibus总线上,WinCC通过S7-300系列PLC对S7-200系列PLC进行监控。
4 第三方软件与PLC的连接
有些系统具有特殊性,没有现成的通用软件用于进行数据处理和系统监控,这就需要用户用第三方软件开发平台开发满足系统要求的软件。这样做既可以满足系统要求.又可以节约系统投资。但对软件开发的经验和技术要求较高。
第三方软件开发平台开发的软件与S7—200系列PLC通信使用PPI协议的接口软件有:Prodave、MicroComputing、OPC。
第三方软件开发平台开发的瞌控软件与S7—200系列PLC通过自由口进行通信.协议自定的话.开发的软件可以调用MSComm控件实现两者的通信。
1、用Prodave软件包实现通信连接
Prodave是西门子公司推出的专门用于西门子PLC产品(S7—200、300、400系列PLC)与PC/PG进行数据交换处理的软件包。Prodave在*DLL或*LIB文件中集成了数据交换的函数。在自行开发的软件中可以方便地调用该软件中的备种函数。
(1)load_tool PC机与PLC系统初始化链接:
(2)urdoad_tool断开PC机与PLC系统链接:
(3)以及读写PLC内部存储区的函数。
软件通过读写函数可以方便监控PLC控制系统。
2、用MicroComputing软件实现通信连接
安装Microcomputing后,在VB或Delphi中可以宜接插入控件。可插入的控件主要有:Data controls、Edit controls、Button controls、Label control、Slider control。
FX3G系列PLC内置大容量程序存储器,较高32K步,标准模式时基本指令处理速度可达0.21μs,加之大幅扩充的软元件数量,使您可更加自由的编辑程序并进行数据处理。另外,浮点数运算和中断处理方面,FX3G同样表现**群。
FX3G本体自带两路高速通讯接口(RS422&USB),可同步使用,通讯配置选择更加灵活。晶体管输出型基本单元更内置较高三轴100KHz独立脉冲输出,可使用软件编辑指令简便进行定位设置。
在程序保护方面,FX3G有了本质的突破。可设置两级密码,区分设备制造商和较终用户的访问权限。密码程序保护功能可锁住PLC,直到新的程序载入。
*三代FX3系列PLC更加完善了产品的扩展性,*具双总线扩展方式。使用左侧总线可扩展连接模拟量/通讯适配器(较多四台),效率更高,并简化了程序编制工作;右侧总线则充分考虑到与原有系统的兼容性,可连接FX系列传统I/O扩展和特殊功能模块。基本单元上还可安装两个扩展板,完全可根据客户的需要搭配出较贴心的控制系统。
FX3G系列PLC传承经典,突破创新,专业为客户提供更具个性化的系统解决方案,在竞争愈发激烈的当代工业领域,可充分满足不**业客户系统要求、具有高度灵活性的FX3G系列PLC必将脱颖而出。
1. 本身有两路高速编程接口,其中RS422接口速度为115.2kbps,另一个通讯接口为迷你USB2.0,较大12Mbaud,这是目**菱小型PLC中**个本身带有USB接口的,这将会给客户提供较大的方便。
2. 程序容量增加,以前的FX1N容量为8K步,现在的容量为32000步,且可选用32K步带程序传送功能的存储盒。
3. 扩大了软元件点数,辅助继电器、状态继电器、指针、定时器等都有增加,其中新增64个1ms定时器,使定时更加精确。辅助继电器数量约是以前的5倍。
4. PLC登陆可以设置两级密码,可以设置OEM关键字和客户关键字,给予客户部分权限,增加了“无关键字程序保护”设定,在此种设置下,即使知道OEM密码也不能读取PLC中的程序。
5. 本身较大3轴100khz脉冲定位,可以使用表格定位和带DOG搜索功能的原点回归。
6. 输入信号可以选择源型或是漏型
自动化系统所使用的各种类型PLC中,有的是集中安装在控制室,有的是安装在生产现场和各电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,一方面要求PLC生产厂家提高设备的抗干扰能力,另一方面要求应用部门在工程设计、安装施工和使用维护中引起高度重视,多方配合才能完善解决问题,有效地增强系统的抗干扰性能。电磁干扰类型及其影响
影响PLC控制系统的干扰源与一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是干扰源。
干扰类型通常按干扰产生的原因、噪声干扰模式和噪声波形性质来划分。按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,可分为持续噪声、偶发噪声等;按噪声干扰模式不同,分为共模干扰和差模干扰。
共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。共模电压有时较大,特别是采用隔离性能差的配电器供电时,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成差模电压,影响测控信号,造成元器件损坏(这就是一些系统I/O模件损坏率较高的主要原因),这种共模干扰可为直流、亦可为交流。差模干扰是指作用于信号两较间的干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的,这种干扰叠加在信号上,直接影响测量与控制精度。
电磁干扰的主要来源
1.来自空间的辐射干扰。空间辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布较为复杂。若PLC系统置于其射频场内,就会受到辐射干扰,其影响主要通过两条路径:一是直接对PLC内部的辐射,由电路感应产生干扰;二是对PLC通信网络的辐射,由通信线路感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小特别是频率有关,一般通过设置屏蔽电缆和PLC局部屏蔽及高压泄放元件进行保护
2.来自系统外引线的干扰。主要通过电源和信号线引入,通常称为传导干扰。这种干扰在我国工业现场较为严重,主要有下面三类:
第一类是来自电源的干扰。实践证明,因电源引入的干扰造成PLC控制系统故障的情况很多,笔者在某工程调试中遇到过,后更换隔离性能更高的PLC电源问题才得到解决。
PLC系统的正常供电电源均由电网供电,由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压和电流,尤其是电网内部的变化、开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。PLC电源通常采用隔离电源,但因其机构及制造工艺等因素使其隔离性并不理想。实际上,由于分布参数特别是分布电容的存在,**隔离是不可能的。
第二类是来自信号线引入的干扰。与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这种往往非常严重。
由信号引入的干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。PLC控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。
第三类是来自接地系统混乱的干扰。接地是提高电子设备电磁兼容性(EMC)的有效手段之一,正确的接地既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地反而会引入严重的干扰信号,使PLC系统无法正常工作。 PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等,接地系统混乱对PLC系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层。当发生异常状态如雷击时,地线电流将更大。
此外,屏蔽层、接地线和大地可能构成闭合环路,在变化磁场的作用下,屏蔽层内会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生不等电位分布,影响PLC内逻辑电路和模拟电路的正常工作。PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。
3.来自PLC系统内部的干扰。主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射、模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。这都属于PLC制造厂家对系统内部进行电磁兼容设计的内容,比较复杂,作为应用部门无法改变,可不多考虑,但要选择具有较多应用实绩或经过考验的系统。
抗干扰设计
为了保证系统在工业电磁环境中免受或减少内外电磁干扰,必须从设计阶段开始便采取三个方面抑制措施:抑制干扰源、切断或衰减电磁干扰的传播途径、提高装置和系统的抗干扰能力。这三点就是抑制电磁干扰的基本原则。
PLC控制系统的抗干扰是一个系统工程,要求制造单位设计生产出具有较强抗干扰能力的产品,且有赖于使用部门在工程设计、安装施工和运行维护中予以全面考虑,并结合具体情况进行综合设计,才能保证系统的电磁兼容性和运行可靠性。进行具体工程的抗干扰设计时,应主要注意以下两个方面。
1.设备选型。
在选择设备时,首先要选择有较高抗干扰能力的产品,其包括了电磁兼容性,尤其是抗外部干扰能力,如采用浮地技术、隔离性能好的PLC系统;其次还应了解生产厂家给出的抗干扰指标,如共模抑制比、差模抑制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作等;另外是靠考查其在类似工作中的应用实绩。
在选择国外进口产品要注意,我国是采用220V高内阻电网制式,而欧美地区是110V低内阻电网。由于我国电网内阻大,零点电位漂移大,地电位变化大,工业企业现场的电磁干扰至少要比欧美地区高4倍以上,对系统抗干扰性能要求更高。在国外能正常工作的PLC产品在国内工业就不一定能可靠运行,这就要在采用国外产品时,按我国的标准(GB/T13926)合理选择。
2.综合抗干扰设计。主要考虑来自系统外部的几种抑制措施,内容包括:对PLC系统及外引线进行屏蔽以防空间辐射电磁干扰;对外引线进行隔离、滤波,特别是动力电缆应分层布置,以防通过外引线引入传导电磁干扰;正确设计接地点和接地装置,完善接地系统。另外还必须利用软件手段,进一步提高系统的性。
主要抗干扰措施
1.采用性能优良的电源,抑制电网引入的干扰。
在PLC控制系统中,电源占有较重要的地位。电网干扰串入PLC控制系统主要通过PLC系统的供电电源(如CPU电源、I/O电源等)、变送器供电电源和与PLC系统具有直接电气连接的仪表供电电源等耦合进入的。现在对于PLC系统供电的电源,一般都采用隔离性能较好的电源,而对于变送器供电电源以及和PLC系统有直接电气连接的仪表供电电源,并没受到足够的重视。虽然采取了一定的隔离措施,但普遍还不够,主要是使用的隔离变压器分布参数大,抑制干扰能力差,经电源耦合而串入共模干扰、差模干扰。所以对于变送器和共用信号仪表供电应选择分布电容小、抑制带大(如采用多次隔离和屏蔽及漏感技术)的配电器,以减少PLC系统的干扰。
此外,为保证电网馈电不中断,可采用在线式不间断供电电源(UPS)供电,提高供电的性。而且UPS还具有较强的干扰隔离性能,是一种PLC控制系统的理想电源。
2.正确选择电缆的和实施敷设。
为了减少动力电缆尤其是变频装置馈电电缆的辐射电磁干扰,笔者在某工程中采用了铜带铠装屏蔽电力电缆,降低了动力线产生的电磁干扰,该工程投产后取得了满意的效果。
不同类型的信号分别由不同电缆传输,信号电缆应按传输信号种类分层敷设,严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠行敷设,以减少电磁干扰。
3.硬件滤波及软件抗干扰措施。
信号在接入计算机前,在信号线与地间并接电容,以减少共模干扰;在信号两较间加装滤波器可减少差模干扰。
由于电磁干扰的复杂性,要根本干扰影响是不可能的,因此在PLC控制系统的软件设计和组态时,还应在软件方面进行抗干扰处理,进一步提高系统的可靠性。常用的一些提高软件结构可靠性的措施包括:数字滤波和工频整形采样,可有效周期性干扰;定时校正参考点电位,并采用动态零点,可防止电位漂移;采用信息冗余技术,设计相应的软件标志位;采用间接跳转,设置软件保护等。
4.正确选择接地点,完善接地系统。
接地的目的通常有两个,一为了安全,二是为了抑制干扰。完善的接地系统是PLC控制系统抗电磁干扰的重要措施之一。
系统接地有浮地、直接接地和电容接地三种方式。对PLC控制系统而言,它属高速低电平控制装置,应采用直接接地方式。由于信号电缆分布电容和输入装置滤波等的影响,装置之间的信号交换频率一般都低于1MHz,所以PLC控制系统接地线采用一点接地和串联一点接地方式。集中布置的PLC系统适于并联一点接地方式,各装置的柜体中心接地点以单独的接地线引向接地较。如果装置间距较大,应采用串联一点接地方式,用一根大截面铜母线(或绝缘电缆)连接各装置的柜体中心接地点,然后将接地母线直接连接接地较。接地线采用截面大于22mm2的铜导线,总母线使用截面大于60mm2的铜排。接地较的接地电阻小于2Ω,接地较较好埋在距建筑物10~15m远处,而且PLC系统接地点必须与强电设备接地点相距10m以上。
信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地。多个测点信号的屏蔽双绞线与多芯对绞总屏蔽电缆连接时,各屏蔽层应相互连接好,并经绝缘处理,选择适当的接地处单点接地。
本文小结
PLC控制系统的干扰是一个十分复杂的问题,因此在抗干扰设计中应综合考虑各方面的因素,合理有效地抑制干扰,对有些干扰情况还需做具体分析,采取对症的方法,才能够使PLC控制系统正常工作,保证工业设备安全运行
产品推荐