• 西门子6ES7231-0HC22-0XA8技术介绍
  • 西门子6ES7231-0HC22-0XA8技术介绍
  • 西门子6ES7231-0HC22-0XA8技术介绍

产品描述

产品规格模块式包装说明全新品牌西门子

西门子6ES7231-0HC22-0XA8技术介绍

(9) 管理资料并定期打印报表;
                    
(10) 与主时钟接口,保证bas系统时钟同步。
            
3  环控系统需求分析
            
3.1 典型环控项目简介
                    
        以南京轨道交通二号线一期工程为例,南京轨道交通二号线一期工程的环境与设备监控系统(简称bas或环控)包括0cc控制中心、维修中心及19个车站的站级bas。其中l7个地下站、1个地面车站、1座高架车站。该系统对南京轨道交通二号线一期工程19个车站的车站设备进行全面、有效地进行自动化监控及管理,确保设备处于安全、可靠、、节能的较佳运行状态,从而给乘客提供一个舒适的乘车环境,并能在火灾或阻塞等灾害状态下,更好地协调车站设备的运行,充分发挥各种设备应有的作用,保证乘客的安全和设备的正常运行。设置bas系统的目的、是以现代计算机技术、网络技术、自动控制技术、软件技术实现对车站各类机电设备的智能化控制,使得系统更安全、可靠、节省人力、物力、降低运营成本。bas应本着技术先进,投资合理,功能完善,组网灵活,运营管理方便和节能降耗的原则进行实施。
                    
        南京轨道交通二号线的bas系统组成*级和车站级的两级管理体系,实现控制中心、车站、就地的三级控制功能。全线网络系统由19个车站及维修中心、occ控制中心组成。具体由设置在occ中央控制室bas设备、各车站综控室的bas设备、配电室、变电所等地的bas设备、现场bas设备组成。车站级的bas信息通过轨道交通通信系统的全线双冗余的骨干网传输至occ中央控制室,实现*级功能。bas系统监视全线各类设备的运行状态,并根据人防门的控制工艺要求,对各隧道区间的水位报警,监视人防门的状态。


3.2 网络通用需求分析
                    
bas设备监控系统主要由*级、车站级和就地级的设备构成。bas*系统位于行车调度指挥中心occ(operation control center)内,具有良好和灵活的人机界面。由双机热备的操作员工作站、冗余服务器及一些外围设备组成。工作人员可监视全线各车站的通风空调、给排水、电扶梯、照明、屏蔽门、人防隔断门、fas系统、ats系统、occ控制中心大楼设备运行状态,以及火灾等灾害情况或阻塞事故状态,并及时控制和处理。
                    
在车站综合控制室内,由车站局域网构成。局域网内设有控制器、主要监控隧道及车站的通风系统、空调大系统、小系统、冷水系统、事故照明、给排水系统、人防密闭隔断门等,监测公共区、设备区等地点的温度,并配置与屏蔽门、照明系统、自动扶梯、fas系统的数据接口,同时在车站控制室设置紧急后备盘ibp(integrated backup panel)。

bas车站局域网采用冗余工业以太网,通信速率为100m的物理接口。车站级局域网通过光口连接到通信系统所提供的接口上,实现车站级局域网与bas广域网的连接。
                    
对于车站的服务器、工作站及其网络交换机不是本文探讨的重点,其具体需求和选型在这里就不加多以详述,下面,我们来分析车站级的冗余plc、ibp盘的plc及其远程i/o的具体需求描述。但总的要求就是所有的硬件设备要求具有防尘、防腐蚀、防潮、防霉、防震、抗电磁干扰和静电干扰的能力,保证在轨道交通环境中安全、可靠地运行。
            
3.3 主控plc需求
                    
在南京轨道交通二号线环控系统中,在车站两端环控电控室内分别设冗余plc控制器及带控制器的i/o,集中监控车站被控机电系统各设备(包括区间射流风机、区间隧道风机、排热风机、回/排风机、空调新风机、组合式空调机组及相关风阀等)的运行状态和故障信号,接收车站的操作命令,并上传数据。两端的冗余处理器分别放置在车站两端的环控电控室内的plc机柜中。处理器带i/o模块,与环控电控室内被监控设备的硬线接口,在每端的plc柜中设置modbus通讯端口,完成与环控电控室内的被监控设备的通讯接口。每端的主控制器上设置两块块以太网卡,向上接入车站级100m以太网,实现数据的可靠上传与下发。主控冗余plc之间通过光纤进行通信,以实现主控冗余plc之间的冗余切换功能。

3.4 ibp盘的plc需求
                    
在南京轨道交通二号线环控系统中,在车站控制室各设置一个ibp紧急后备盘,对于应急、备份和直接的操作要求,设置在ibp盘上,由相关人员根据具体情况及相应的操作规程进行处置。当车站各专业系统的设备发生故障时或紧急情况下,可通过ibp实现车站的关键控制功能。ibp在每个车站控制室为以下控制操作提供紧急操作功能。ibp为操作值班员提供常用设备的备用操作手段,**设备的正常运转。

ibp作为排水泵、隧道通风系统、车站大系统、小系统在火灾模式或列车阻塞模式等的运行控制的紧急后备操作盘。当车控室工作站(由主控系统配置)出现故障时,可以通过综合后备盘ibp,手动紧急控制通风排烟设备按灾害模式运行。此外,ibp还根据ats、pa、pscada、afc、psd、fas等专业的要求提供的报警音响器件、控制按钮以及指示灯等元器件。
                    
ibp盘的plc要求必需完成上述所提到的功能,并可以实现与车站的冗余网络进行互联。
            
3.5 就地级i/o的需求
                    
在南京轨道交通二号线环控系统中,就地级设备控制由就地级控制箱、ri/o模块等设备组成,通过现场总线与车站的plc连接,实现对现场信号的采集、信号的转换和控制信号的输出。通过plc**通讯模件,与具有智能通信接口的各个现场设备通过现场总线,实现数据的通讯。通讯协议为modbus或profibus现场总线。通过plc**通讯模件,实现不同通信要求的转换,保通信数据的实时采集和安全传输。
                    
实现单台机电设备的就地控制,满足设备的现场调试和现场控制的要求。可对现场设备的状态进行数据采集、并将信号转换输送到上位控制系统,同时,执行控制器的控制命令,完成现场设备与控制系统的连接。
                    
具有智能通信接口的各个现场设备通过现场总线和控制器相连接,实现数据的通讯与数据交换。采用各个通信接口模块,用以实现不同通信信号的数据交换要求,保现场数据的实时采集和安全传输。实现对远离主控制系统的末端设备的信息和监督控制。
            
4  modicon plc的具体解决方案
            
4.1 施耐德plc简介
                    
施耐德电气公司不仅是公认得可编程逻辑控制器plc的**,同时也是plc热备系统技术发明的拥有者。quantum通用自动化系统是专门面向过程控制而设计的通用的自动化系统平台,适用于轨道交通,电力,化工,建材等各行各业的工业控制和自动化领域中。quantum继承和发展了施耐德自动化modicon产品一贯的特点和优点,并且融入了当今较新的it技术和网络技术,具有结构灵活、功能强劲、使用简便、性价比高、集成度高、兼容性好,广泛的开放性等众多特点。
                    
quantum系统已在国内外诸多行业中得到了非常广泛和成熟的应用,并在工业现场经过了长期、稳定运行,受到了广大用户的信任和称赞。quantum系统具有配置简单、接线方便、易于维护、隔离性好,结构坚固,抗腐蚀强,适应较其恶劣的工业环境。并且quantum所有部件均可带电热插拔,并且平均无故障时间均大于200000小时。
                    
quantum 自动化平台提供多种形式的解决方案。单机架控制系统较大448个i/o点,多站点控制系统可配置网络服务功能,较大64000个i/o点。在通讯选件的支持下具有至工厂级和现场总线网络ethernet、modbus plus,profibus-dp,interbus等的连接性能。

使用unity pro软件的双机热备系统能够实现主备机之间平稳、无缝的切换。切换对于过程而言是透明的,系统对过程的监控不会中断,并且不会因为发生硬件故障而受到不利影响。quantum 模块的i/o站点在unity pro 软件编程环境中进行配置,使用unity pro 的双机热备系统因此能够减少停机时间,从而提高生产效率。
            
4.2 plc模件选型
                    
我们根据根据在南京轨道交通二号线环控系统的要求,通过调研,根据南京轨道交通二号线的实际设计方案,选用了施耐德公司推出的modicon quantum 系列plc作为南京轨道交通二号线环控bas系统的plc组网方案。

4.3 主控plc选型

4.4 ibp盘的plc选型
                    
根据南京轨道交通二号线环控系统对ibp盘的plc的要求。

4.5 就地级i/o的选型
                    
根据南京轨道交通二号线环控系统对就地级i/o的要求。

通过采用上述的modicon系列模件的选型,完成了南京轨道交通二号线环控bas系统的组网方案,并且该方案已经在具体的项目中被加以采用。
            
5  结束语
                    
南京轨道交通二号线的环控bas系统,在总结国内轨道交通技术和南瑞以往轨道线路经验的基础上进行了改进和优化,采用了施耐德公司推出的modicon quantum系列plc作为bas系统的组网方案,实现了信息的共享和对轨道交通环控设备的实时监控。由于施耐德公司推出的modicon quantum 系列plc具有速度快、系统实现简单、可靠性高,易用性高等以上优点,该modicon quantum系列plc产品的已经在在北京地铁10号线环控bas系统、上海地铁6、8号线环控bas系统、广州地铁3号线环控bas系统等轨道交通线路均采用了modicon quantum 系列plc产品,现场运行状况十分良好。由于modicon quantum 系列plc以实现系统结构、服务、管理的较优化组合,较大限度地发挥设备的效能,减少硬件设备、管理人员数量,从而降,可以预见,施耐德modicon quantum 系列plc必将在轨道交通环控系统中得到广泛的应用。

1 . 概述

随着科学技术的发展,PLC工业控制中的应用越来越广泛。PLC控制系统的可靠性直接影响到工业企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。自动化系统中所使用的各种类型PLC,有的是集中安装在控制室,有的是安装在生产现场和各种电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。要提高PLC控制系统可靠性,设计人员只有预先了解各种干扰才能有效保系统可靠运行。

2.电磁干扰源及对系统的干扰

影响PLC控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。

干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按声音干扰模式不同,分为共模干扰和差模干扰。共模干扰和差模干扰是一种比较常用的分类方法。共模干扰是信号对地面的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压送加所形成。共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V 以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O 模件损坏率较高的原因),这种共模干扰可为直流、亦可为交流。差模干扰是指用于信号两较间得干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。

3. PLC 控制系统中电磁干扰的主要来源有哪些呢?

(1) 来自空间的辐射干扰

空间的辐射电磁场(EMI)主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布较为复杂。若PLC 系统置于所射频场内,就回收到辐射干扰,其影响主要通过两条路径;一是直接对PLC 内部的辐射,由电路感应产生干扰;而是对PLC 通信内网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小,特别是频率有关,一般通过设置屏蔽电缆和PLC 局部屏蔽及高压泄放元件进行保护。

(2) 来自系统外引线的干扰主要通过电源和信号线引入,通常称为

传导干扰。这种干扰在我国工业现场较严重。

(3)来自电源的干扰

实践证明,因电源引入的干扰造成PLC 控制系统故障的情况很多,笔者在某工程调试中遇到过,后更换隔离性能更高的PLC 电源,问题才得到解决。

PLC 系统的正常供电电源均由电网供电。由于电网覆盖范围广,将受到所有空间电磁干扰而在线路上感应电压和电路。尤其是电网内部的变化,开关操作浪涌、大型电力设备起停、交直流转动装置引起的谐波、电网短路暂态冲击等,都通过输电线路到电源边。PLC 电源通常采用隔离电源,但其机构及制造工艺因素使其隔离性并不理想。实际上,由于分布参数特别是分布电容的存在,**隔离是不可能的。

(4 ) 来自信号线引入的干扰

与PLC 控制系统连接的各类信号传输线,除了传输有效的各类信号之外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器或共用信号仪表的供电电源串入的电网干扰,这往往被忽略;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常和测量精度大大降低,严重时将引起元器件损伤。对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。PLC 控制系统因信号引入干扰造成I/O模件损坏数相当严重,由此引起系统故障的情况也很多。

(5)来自接地系统混乱时的干扰

接地是提高电子设备电磁兼容性(EMC)的有效手段之一。正确的接地,既能抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC 系统将无法正常工作。PLC 控制系统的地线包括系统地、屏蔽地、交流地和保护地等。接地系统混乱对 PLC 系统的干扰主要是各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层必须一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层,当发生异常状态加雷击时,地线电流将更大。

此外,屏蔽层、接地线和大地有可能构成闭合环路,在变化磁场的作用下,屏蔽层内有会出现感应电流,通过屏蔽层与芯线之间的耦合,干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流可能在地线上产生不等电位分布,影响PLC 内逻辑电路和模拟电路的正常工作。PLC 工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC 的逻辑运算和数据存储,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起对信号测控的严重失真和误动作。

(6)来自PLC 系统内部的干扰

主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。这都属于PLC 制造厂对系统内部进行电磁兼容设计的内容,比较复杂,作为应用部门是无法改变,可不多考虑,但要选择具有较多应用实绩或经过考验的系统。

4.怎样才能更好、更简单解决PLC系统干扰?

1)选用隔离性能较好的设备、选用优良的电源、动力线和信号线走线要更加合理等等,能解决干扰,但是比较烦琐、不易操作而且成本较高。

2)利用信号隔离器这种产品解决干扰问题。只要在有干扰的地方,输入端和输出端中间加上这种产品,就可有效解决干扰问题。

5.为什么解决PLC系统干扰可以选择信号隔离器呢?

1)使用简单方便、可靠,廉。

2)可大量减轻设计人员、系统调试人员工作量,即使复杂的系统在

普通的设计人员手里,也会变的非常简单可靠。

6.信号隔离器工作原理是什么?

首先将PLC接收的信号,通过半导体器件调制变换,然后通过
光感或磁感器件进行隔离转换,然后再进行解调变换回隔离前原信号或不同信号,同时对隔离后信号的供电电源进行隔离处理。保证变换后的信号、电源、地之间**独立。

7. 现在市场有那么多品牌的隔离器,价格参差不齐,该怎么选择呢?

隔离器位于二个系统通道之间,所以选择隔离器首先要确定输入输出功能,同时要使隔离器输入输出模式(电压型、电流型、环路供电型等)适应前后端通道接口模式。此外尚有精度﹑功耗﹑噪音﹑绝缘强度﹑总线通讯功能等许多重要参数涉及产品性能,例如:噪音与精度有关、功耗热量与可靠性有关,这些需要使用者慎选。总之,适用、可靠、产品性价比是选择隔离器的主要原则。

202207281244519172844.jpg202202231632210850864.jpg202202231632201798164.jpg


由西门子S7-200PLC组成的RS485通信网络其较大通信距离为500米,可挂接32个节点,距离**过500米时需在RS485总线上加装 RS485中继器,为方便接线,每个PLC的通信端口需安装总线连接器,网络的两端需配接终端电阻。这是一种常规的通信方案,有以下几个缺点:

1、 当距离**过500米时,需增加RS485中继器来延长通信距离,而中继器需要供电,这对于有些无供电条件的场合,如野外、油田、海底等将带来很烦。

2、 整个通信网络是非隔离的,抗干扰能力较差,特别是当网络上连接有变频器通信时容易造成误码和死机。

3、 由于通信网络是非隔离的,当有雷电或其它较强的瞬变电压干扰作用于网络上时势必造成网络上的全部PLC损坏,带来重大的损失!

采用德阳四星电子研制PFB-G总线隔离器或CAN-485G远程驱动器可以很好的解决以上问题:

一、采用PFB-G隔离器达到2公里通信距离:

通过在每台PLC的通信口安装PFB-G总线隔离器,无中继器时可实现较大通信距离为2公里(9600bps时),较多站点数量为160 个,如距离**过2公里可在网络中加装RS485中继器(型号:E485GP),PFB-G的较高通信速率为12Mbps,可用于PROFIBUS网络、 PPI网络、MPI网络和自由口通信网络等一切RS485网络,特别适用于干扰较大的恶劣环境,由于光电隔离解决了各个节点由于地电位差带来的经常损坏通信口的问题,并使通信中的干扰减小到较小,特别是当网络中有变频器通信时效果更为明显。

如总线上需挂接变频器通信,为便于安装和接线,可将PFB-G换成BH-485G隔离器,将变频器的RS485口经BH-485G隔离后再和总线相连,这种方案可以很好的解决PLC与变频器通信时的干扰和死机问题!

二、采用CAN-485G远程驱动器达到5公里通信距离:

通过在每台PLC的通信口安装CAN-485G远程驱动器,如下图所示,无中继器时可实现较大通信距离为5公里(9600bps时),这可能是目前无中继器时铜线传输的较大距离,CAN-485G是隔离的透明传输驱动器,该产品并未使用CAN协议而采用了透明传输方式,因此使用CAN-485G后并不需对原有软件作任何!CAN信号与RS485信号相比有诸多优点,读者可参看网站的相关文章。

说明:

通信线的截面积比RS485通信线大,应选1mm2的双绞线,由于CAN-485G和CAN-232G(接电脑的RS232口)设计有二对总线端子,按图所示接线也就不存在分支线问题了。

CAN-485G和CAN-232G内部已设计有终端电阻,需将总线的始端和末端上的终端电阻设置开关K拨到“R”(接入120欧终端电阻),而其它站点应拨到“OFF”(不接终端电阻)。

如总线上需挂接变频器通信,请将变频器的RS485口经CAN-485G隔离后再和总线相连,这种方案可以很好的解决PLC与变频器通信时的干扰和死机问题!

CAN-232G和CAN-485G均需5VDC工作电源,对于CAN-232G的工作电源可取自电脑的USB口或用5VDC稳压,而CAN- 485G的工作电源须单独由5VDC稳压电源供给,因为西门子S7-200PLC通信口上6、5脚输出的5VDC电源因串联了100欧的限流电阻而无法作为电源使用。

以上方案已在实际工程中明非常稳定可靠,实际上对于其它任何使用RS485通信的设备都适合该方案,即使是近距离通信,虽然不需隔离驱动也能完成,但经过隔离后的网络是非常稳定可靠、安全的,设备的故障将会大大降低,如此较小的投入必将获得很大的收益。

  一般在STEP7软件中并没有具体用梯形图表示积分和微分的模型,而是直接调用纯软件PID控制功能块来实现微分积分功能(PID控制)。如STEP7提供了系统功能块(其中S7-400为SFB41、SFB42、SFB43,S7-300PLC为FB41、FB42、FB43)实行闭环控制,其中SFB41(CONT_C)用于连续控制,SFB42(CONT_S)用于步进控制,SFB43(PULSEGEN)用于脉冲宽度控制,可以都是系统固化的纯软件控制器,运行过程中循环扫描、计算所需的全部数据存储在分配给FB或SFB的背景数据块中,可以无限次调用。打开一个程序块,在LAD/FBD/STL编辑器中,通过选择左边New Network(新网络)下Library(库)/Standard Library(标准库)/PID Controller(PID控制器),直接插入PID控制器下的FB41、FB42、FB43(与S7-400PLC的SFB41、SFB42、SFB43兼容),而FB58和FB59用于PID温度控制。
    如有一台电炉要求炉温在一定范围内,就可以通过在周期性中断组织块OB35中调用PID控制器FB41,当设定电炉温度后,如CPU314C-2DP经过PID运算后由自带模拟量输出模块输出一个电压信号送到控制板,控制板根据电压信号的大小控制电热丝的加热电压的大小。可以通过或取消PID控制器FB41中的




http://zhangqueena.b2b168.com

产品推荐