• 6ES7212-1AB23-0XB8原装库存
  • 6ES7212-1AB23-0XB8原装库存
  • 6ES7212-1AB23-0XB8原装库存

产品描述

产品规格模块式包装说明全新品牌西门子

6ES7212-1AB23-0XB8原装库存

在过去的数十年中,工程师和科学家们使用可编程的逻辑控制器(PLC),实现了我们身边世界的自动化;在可预见的将来,PLC的应用仍将继续。PLC是专为离散控制应用而设计的,是工业应用中主要的有用工具;然而,随着工业机器和工厂复杂度的增加,仅凭PLC完成这些工作,即便可能,也是非常困难的。今天的自动化系统远超出了PLC的能力拓展,使得工业机器领域的工程师们不得不面对在其现有系统中集成更多高级I/O、处理和控制的需要。新推出的可编程自动化控制器(PAC)硬件系统,可以方便地与PLC集成,以便在工业机器中添加更多高级功能并提高其效率,这使得PAC成为PLC系统的理想解决方案。

目录
1. 提高机器的效率
2. 在现有PLC系统中添加高级I/O和高级信号处理功能
3. 将PAC集成至现有PLC系统
4. 总结

提高机器的效率
集成工业系统(I2S),一家数十年来专门生产现有金属轧机设备与控制系统的私营美国OEM公司,为我们提供了一个关于如何改善现有PLC系统的极佳范例。多年来,I2S一直使用PLC实现其所产轧机的自动化和控制。近年来,该公司业已开始尝试升级其轧机控制系统以改善效率与质量。为了升级该系统并改进其机器设备,I2S需要这样一个解决方案,它能提供更高的模拟输入精度以便实现与其伽马测量传感器的接口,以及高级信号处理功能,以来自传感器的模拟信号并将该信号转换为一个极为准确的厚度测量值(PLC将在轧机控制循环中使用这一测量值)。
为了节约时间与成本,I2S首先尝试在现有PLC系统中实现高级模拟测量与处理功能。当发现PLC无法提供所需的精确模拟I/O与信号处理功能时,I2S转向了NI CompactRIO——一个可重新配置的嵌入式PAC系统。

在现有PLC系统中添加高级I/O和高级信号处理功能
NI CompactRIO拥有一个嵌入式FPGA芯片与一个实时处理器,您可以通过内置的NI LabVIEW功能模块对其进行编程控制。CompactRIO还具有超过30个模拟与数字I/O模块,这些模块包含内置的信号调理(包括抗混叠、隔离、ADC和DAC等)、高速定时(模拟I/O高达800 kHz,数字I/O高达30 MHz)和高精度(高达24-位ADC)处理模块,以便与任一工业传感器或执行装置相连接。包装机械的较大特点是动作复杂、频繁,且有较多的执行元件。在这种场合使用继电器控制逻辑必然需要大量的中间继电器,而这些中间继电器在用PLC控制的情况下,就可以对其内部的辅助继电器进行编程后来取代。
从物理介质方面来讲,前者是要用具体的电气元件来组合,而后者只是PLC的内部寄存器,在PLC编程容量许可的范围内,可以不花费额外的费用来实现复杂的控制逻辑。一般的PLC都有上百点内部辅助继电器甚至更多,且还有多种**的内部电器,足可以应付一般的控制要求,一需要做的工作就是对PLC进行编程。事实上PLC用于这种场合是较能显现出其经济性。当然我们不仅忽视了PLC的另一个优点,那就是其运行速度及可靠性和寿命远远**继电器控制方式,从上述意义上来讲,PLC较适合于需要大量中间继电器的场合。且PLC与其他工业控制系统比较具有许多优点:

1)更改控制逻辑只需软件,*对硬件作改动;
2)程序可以复制,批量生产很容易;
3)电气硬件设计大大简化;
4)由于PLC除有继电器功能外,尚有多种其它功能,可以实现继电器无法实现的控制功能,实现某种程度上的智能化,并有可能使机构简化;
5)可靠性高;
6)成本相对于继电控制而言稍高,但继电器控制随着所用中间继电器数量的增加 ,成本急骤上升,而PLC控制几乎保持不变,这一点对于复杂的控制来讲具有 无 可 比拟的优越性;
7)具有扩展单元或扩展模块,当需要较多工/0时可以方便地扩展。

因此,国外在注塑机、各种包装机上己经大量地采用了PLC来取代传统的继电器控制屏,故障率大大降低,性能有了很大提高。

我国包装机械目前控制部件大多还沿用继电器方式。如果能用PLC来取代的话,则可以简化机械结构,机械和电气设计都可以得到简化。更重要的是可以使原来无法实现的某些功能得以实现,使机器在某种程度上实现智能化

将运动控制集成到PLC程序使编程变得简单,而且提高了R&B塑料机械公司系列
吹塑机的性能。图片来源:Siemens SEA
用PLC实现运动控制
一种特殊的R&B吹塑机器有9根伺服液压驱动轴——3根用来控制型坯(把材料挤压成空心管或半球体,这是吹塑工艺的第一步),6根用来控制运动。这种机器包含2个梭子,2个模具,以及2根吹管。运转时控制工程网版权所有,夹具反复打开和夹紧模具,吹管反复做上下运动,传送装置带动夹具至型坯正下方,到达吹气位置。
David Chin是NDC Technologies的技术人员,该公司是Siemens的战略合作伙伴,一同参与了R&B控制系统升级项目。Chin说:“R&B使用了标准的Siemens Simatic S7 PLC来控制这些位置运动。我们提供了一套功能模块,使R&B能运用PLC进行位置控制。其它的机器可能要使用运动控制器来控制运动,这是一种**于伺服控制和定位的控制器。我们定制的功能模块能够达到与独立控制器相同的功能和性能。”
Chin说:“PLC通常很难做到高精度的伺服控制,这是**运动控制器被广泛采用的原因。但是在我们的应用中,标准的Siemens S-7 PLC承担了运动控制功能,它通过液压驱动装置对各个部件进行定位。”
PLC还对30多个区域进行温度控制,这些区域包括加料斗、挤出机以及型坯顶部。其中12个区域既能加热又能冷却,另外18个只能加热。温控系统必须将机器各部分的温度误差范围控制在1度以内。型坯顶部要能够将料斗传来的冷塑料加热到415 °F。
常规PLC采用IEC-61131标准语言编写的功能模块控制所有的伺服液压系统驱动轴。它不需要特殊的运动控制环境。加入运动控制功能的PLC相对于**PLC和独立的运动控制器而言,具有更出色的性能和更的处理能力。
集成型坯控制
R&B较初希望通过PLC实现型坯控制。通常,吹塑机由机械控制器或基于PC的自动化设备控制。前者带有独立的型坯程序单元以及**运动控制卡件;后者通过**代码达到运动控制的要求。
然而,R&B希望将型坯程序集成到主机器控制器中。如果PLC的运算速度足够快,就能有够实现这一目标。用于型坯控制的模拟数据直接从一个位置检测器输入。所有的处理过程都和普通PLC程序一样。较终,驱动型坯吹塑的液压阀由PLC输出的模拟信号控制。整个过程不需要借助任何**设备。
该公司随后把其余的伺服液**控制程序也集成到PLC中。位置检测器通过SSI模块把数据传送到PLC。如有需要,可以通过Siemens的Profibus Isochrone(等时)模式将SSI模块传来的位置数据与PLC程序同步。同样,液压阀都由标准的模拟输出信号控制。
另外,R&B还把控制吹管与传送装置运行的程序集成到PLC中。当传送装置将模子带动到吹管位置时,吹管就会按程序设定向下运动。由于两者(传送装置与吹管)的转轴实现了协调控制,这个过程很少出错且不用担心会产生碰撞。
在把这项功能集成到PLC之前,由于吹管和传送装置之间无法通信,R&B无法实现两者的同步。PLC的通信协议使两者首度实现了同步。
减少空循环时间
吹塑过程中,所**器吹制或冷却一个瓶子的时间都相差无几。但是,在循环时间,尤其是空循环时间(机器不在吹瓶的时间)方面,机器之间存在差异。循环时间是指开始吹一个瓶到准备吹另一个瓶之间的全部时间。
PLC中的运动控制功能提升了协调空循环动作的水平,从而减少了特定动作之间的间隔时间。它们能依据位置而不是时间协调各种动作。这样就能大大减少空循环的时间,为R&B赢得了循环时间上的优势。其结果是可以节省下大约20%的空循环时间。
事实证明控制工程网版权所有,采用基于常规PLC的自动化吹塑解决方案代替**运动型坯控制器可以获得巨大的优势。由于所有的伺服功能都由一个功能模块控制,这意味着更好的协调性、更快的机器循环时间、更简洁的程序以及更精简的设备。另外,由于**硬件都是小规模生产的,势必会产生质量控制和长期技术支持方面的问题,而且需要根据出现的问题修改设计,所有这些都会增加额外的经济投入。
事实证明,与基于PC的控制相比,基于PLC的自动化解决方案能为吹塑提供更有吸引力的成套控制设备。它们拥有更好的模块,使用了固态存储器控制工程网版权所有,不需要第三方操作系统,使用寿命更持久,长期支持更出色。与PC相比,PLC的关键优势之一是在突然关闭的情况下依然能够保存数据(如断电情况)。
R&B Plastics的Jake Losee说:“现在我们采用一个控制器控制PLC功能和运动控制功能。以前使用独立运动控制卡时的通信延迟已经不存在了。而且,我们能记录每根轴的转动。以前我们使用独立软件时,需要了解**运动控制卡的技术人员对其进行编程。现在,用户可以通过人机界面(HMI)自行完成这些工作。”
Losee还说:“我们的一个目标是精简设备。额外的设备意味着更高的成本、更繁琐的维护以及更多的配套软件。这就要求我们对维护人员进行更多的培训。用PLC集成运动和型坯控制确实是一个高度优化的控制方案。

202202221739072455394.jpg202202221739073176584.jpg20220222173907301904.jpg

安全制动器是一种非常成熟可靠的产品,对安全制动器采用何种控制方式以确保其准确无误的动作,使其在事故状态下确实起到安全保护作用,对电气控制提出了较高的要求,即控制的可靠性、准确性非常重要。
1安全制动器在铸造起重机上的作用
铸造起重机用于冶金行业,其工作任务是为冶炼炉运送钢水。一般有5大机构:主起升,副起升、大车、主小车、副小车机构。电机安装在高速轴上,卷筒安装在低速轴上,高速轴和低速轴通过减速器连接在一起。传统的起升机构制动器设在高速轴上,称工作制动器。在这种情况下,如果高速轴和低速轴之间的某个传动环节故障,主起升制动器对于卷筒将失去作用。针对这种情况,在卷筒上装设制动器,称安全制动器。在传动环节故障和超速故障时,运行制动器先动作,安全制动器延时动作。确保起吊的液态金属钢水包能够在事故状态时受到保护并制动。
2安全制动器控制方式
(1)卷筒上装设超速开关,在起升机构故障且卷筒超速时,安全制动器动作。优点是控制原理比较简单,调试方便。缺点是卷筒只有在超速时才起作用,安全制动器动作对机械结构破坏较大。
(2)高低速的传动速比是常数,通过装置不间断的检测该常数。当这个常数发生变化时,就意味着机械的传动环节被破坏,安全制动器立即动作。优点是在故障发生的初期就能判断出来,使安全制动器动作,安全制动器动作对机械结构破坏较小。缺点是控制原理比较复杂,调试需专业电气技术人员。
3安全制动器的控制硬件组成
(1)安装在2卷筒上的2个编码器。
(2)安装在2主起升电机上的2个编码器。
(3)安全制动器控制屏(或柜)(安装有:可编程控制器、断路器、继电器、接触器、稳压电源、接线端子等)。
(4)控制屏到4个编码器的屏蔽电缆。
(5)安装在操作台上的急停按钮和故障复位按钮,安全制动器松闸指示灯,编码器故障指示灯等。
4电气安装与元件选型
安全制动器误动作影响起重机的正常使用,可能造成更大的损失。如果安全制动器经常误动作,使用者会对安全制动器所起的作用产生怀疑并失去信心。为了确保安全制动器不会误动作,在可编程控制器的程序完全无误并且可以正常工作的情况下,元器件的选型和电气安装显得尤为重要。
4.1电气安装
(1)控制屏到4个编码器的屏蔽电缆中间无断点,如有断点要对断点做屏蔽处理。
(2)控制屏到4个编码器的屏蔽电缆的屏蔽层需2端接地,且保证是同一地。为保证是同一地,主小车上应装有接地装置。使主小车和大车处于同一地。
(3)计算屏蔽电缆的长度,确认编码器脉冲信号的传输距离在有效的范围内。
(4)4个编码器的信号线和电源线用不同的屏蔽电缆。信号线和起重机上的各种电源线要分开布置。
(5)稳压电源安装在靠近可编程控制器处,并接地。
(6)信号线不上接线端子,直接接在可编程控制器输入模块上。
(7)如果起重机的某机构装有变频器或其他干扰比较强的设备,要装有进出线电抗器或其他装置,把对安全制动器控制系统的干扰减少到较少。
4.2元件选型
(1)编码器的选型要和可编程控制器相匹配。输出方式要选推挽输出方式。炼钢厂的环境比较差,铁粉尘很大,编码器要选用比较高的防护等级值。编码器的输出电压要和供电电压值相匹配。
(2)可编程控制器要有4个独立的高速计数器,且高速计数器的高速计数能力要能满足要求。这需要通过计算来确定。实际使用中发现高速计数器的高速计数能力较好能达到1.5~2倍的实际需要计数能力,这样才能确保可编程控制器程序正常工作。
5 PLC控制系统原理
(1)PLC控制系统
该系统选用西门子S7-200PLC进行控制,具有极高的性价比,较高的可靠性、丰富的指令,实时特性强的通讯能力,易于掌握,便于操作,丰富的内置集成功能和扩展模块。PLC控制系统原理框图见图1。
(2)PLC程序编制
将程序结构化编程,控制任务分解为能够反映过程的工艺、功能或可以反复使用的小任务,这些任务由相应的程序部分表示,即为所知的块,为使用户程序工作,组成用户程序的块必须被调用,块调用指令只能在逻辑中编写和启动。为了能让程序正常工作,编制时要注意以下几点:
①尽量使中断程序短小、简单。且执行中断程序时对其他处理不要延时太长;
②几个中断程序的、执行、退出的工作时序要计算好;
③比较时要留有一定的余量。
该系统对安全制动器的控制已用于生产实践中,对于钢水的运送起到了保护作用,在意外事故状态下避免了设备、财产损失,杜绝了人身伤亡事故的发生,在生产中对安全制动器的控制应用准确、可靠、良好。

现在国内外一些*的品牌厂家几乎论断的整个工业自动化控制领域,如:国外的有艾默生、西门子;国内的有:浙大中控、和利时等,那么在这些控制系统中较常规的PID控制是怎么实现的,他们又是怎么进行编程组态得到的PLD运算的,本文就常规的PID及起模块进行总结以及应用做个简单的介绍:
一、DCS及PLC控制系统中PID的运算
1 指令解说
l 上式T为梯形图时间继电器周期输出,在此引为采样及调节周期。
l S1为设定的目标值,又称给定值
l S2为实际测定值。
l S3为PID控制参数的起始参数单元,控制参数占用S3后续的25个D数据寄存器。具体说明如下:
S3+0: TS 采样时间 设定为K1(1T)
S3+1: ACT.运算方向 一般设为 H0001;
设为H0000时为反PID运算。
S3+2: L 滤波系数 0-99% 0% 无滤波。 参考设定为K50
0000-99.00
S3+3: KP 比例増益 0-32767% 参考设定为K2000。
0000-327.67
S3+4: TI 积分时间 0-32767(•1T) 参考设定为K500。
S3+5: KD 微分増益 0-32767% 一般设定为K0。
0000-327.67
S3+6: TD 微分参数 0-32767(•1T) 设定为K0,无微分
S3+7: 偏差,浮点数表示,占两个字节:S7+7,S7+8。
E(K)=SV-PV (ACT.0=1)
E(K)=PV-SV (ACT.0=0)
S3+8:
S3+9: 偏差的一阶导数,浮点数表示。S3+9,S3+10
E(K)'=E(K)-E(K-1)
S3+10:
S3+11: 偏差的二阶导数,浮点数表示。S3+11,S3+12
E(K)''=E(K)'-E(K-1)'
S3+12:
S3+13: 本次滤波后的实测值,浮点数表示。S3+13,S3+14。
PVF(K)=PV(K)+L• [PVF(K-1)-PV(K)]
S3+14:
S3+15: PID的微分调整项,浮点数表示。S3+15,S3+16。
PID_D(K)=[TD•E(K)''+KD•TD•PID_D(K-1)]/(TS+KD•TD)
S3+16:
S3+17: PID的本次调整输出,浮点数表示。S3+17,S3+18
DMV(K)=DMV(K-1)小数部分+KP[E(K)'+TS•E(K)/TI+PID_D(K)]
S3+18:
S3+19: PID控制的输出值,取值范围:0-32767。
MV(K)=MV(K-1)+INT(DMV)
S3+20: SH 上限报警 设定为K20000
S3+21: SL 下限报警 设定为K20
S3+22: OH 上限幅值 设定为K10000
S3+23: OL 下限幅值 设定为K20
S3+24: ALM.0 SH上限报警时ON
ALM.1 SL下限报警时ON
ALM.2 OH上限输出时ON
ALM.3 OL下限输出时ON
PID运算式
1. PVF(K)=PV(K)+L•[PV(K-1)-PV(K)]
E(K)=SV(K)-PVF(K)
E(K)'=E(K)-E(K-1)
E(K)''=E(K)'-E(K-1)'
2. D(K)=[TD•E(K)''+KD•TD•D(K-1)]/(TS+KD•TD)
3. MV(K)=MV(K-1)+KP•[E(K)'+TS•E(K)/TI+D(K)]
符号说明:
PV:测定值。 SV:目标值。 MV:输出值。
PVF:滤波后的测定值。
L :滤波系数。
TS:采样时间。
KP:比例増益。
TI:积分时间。
TD:微分时间。
KD:微分増益。
PV(K):本次采样测定值。
D(K): 微分项。
INT(DMV):PID本次增量输出。
PV(K-1):一个调节周期T前测定值。
二、DCS及PLC控制系统中PID的运算的应用
案例一. 控制一组(四台)实验电炉,温度检测用PT100热电阻,工作温度在100℃以下,控制精度要求在0.1℃,超调小于0.5℃。热源为电阻丝,每电炉发热总功率380VAC 8KW。
控制方案:选一混合型PLC作调节控制单元,其输出控制四个三相智能模块硅,办公室计算机与PLC通信,作温度跟踪记录。
各通道的设置参数(由人机界面或字符屏设定):
0通道1通道2通道3通道
AI通道设定温度D300D310D320D330
P参数D301D311D321D331
I参数D302D312D322D332
D参数D303D313D323D333
PID手动自动切换M100M110M120M130
手动加M101M111M121M131
手动减M102M112M122M132
实测温度D10D11D12D13
DA通道输出电流D20D21D21D23
选取其中一路作简要说明:
第一步:规划并设定控制区参数。PID控制共占用28个数据寄存器,**路控温规划到D2000-D2027。
第二步:PID调节与手动调节要相互协调,做到无扰切换。示例中,手动调节和自动调节较终输出都归入D2028


http://zhangqueena.b2b168.com

产品推荐