产品描述
近年来.高压变频调速技术已越来越多的应用在各行各业,以达到节约电能、改善电机系统寿命、提高产品质量的目的高压变频器在全世界的应用比低压变频器晚.其主要原冈是受逆变器开关器件制造水平的制约近十年来.随着新器件的问世.器件耐压水平不断提高.高压变频器得到了迅速发展和广泛应用[1]。按我国的电压标准.通常把额定电压3kv以上的电机称为高压电动机.其主要电压等级为3、6、10kV等,文中将用于这些电压等级电动机的变频器称为高压变频器。
应用高压变频器的优势
某企业生产装置中有一台1400kW、l0kV的S0,风机,其是丁艺流程中的关键设备。由于生产过程中系统炯气量波动较频繁.且波动范围较大.如果川传统的前导可调机构来调节风机的流量和压力,渊节范围受到限制.一般在40%~100%.且调节线性太差.跟不上工况变化速度,故能耗很高:而用变频调节响应较快.基本与工况变化同步.可满足工艺的需要,且风机启动运行平滑,不会对电机、轴承、风机产生较大的冲击.可达到调节准确、节省能源的目的。
根据异步电动机转速公式:n=60f(1一s)/p,可以看出.转差率s变化不大,可视为恒定,一旦电机制造完成电机较对数p也是常数.所以电机转速n与电源频率f是成正比的。只要改变频率f,即可改变电机转速.当频率厂在0~50Hz之间变化时,电机转速调节范围是非常宽的根据流体力学流量与风机转速的关系可知.电机功率P与转速n的立方成正比.随着转速的降低。电机功率以转速的3次方关系递减因此随着电机转速的降低.电机消耗的电能下降幅度很大。可见,使用高压变频器对SO2风机调速的节电效果将非常显着.经估算.2~3年就可以收回成本。
变频调速技术方案
变频调速一般有以下3种方案可以实施应用:①高一高方式,即采用10kv(6kv)电压等级的变频器,直接由电网l0kV(6kV)供电,电机选用高压电机;②高一低一高方式,就是先将高压电源变成低压电源.采用低压变频器变频后再升压.电机选用高压电机;③高一低方式,就是用一台单独的变压器,将l0kV(6kv)高压降至380V,采用低压变频器,用低压电动机。
对比3个方案.使用高一高变频器.在变频器故障时可以直接启动.有定型产品.性能良好,稳定可靠,但费用较高:高一低一高方式无定型产品.要重新设计电路,电路烦琐庞大.要增加两台变压器.费用也较高;高一低方式中变频器直接使用低压电源,需要设一台降压变压器当降压变压器的容量比较小时,在变频器故障后,电机不能直接启动。如果降压变压器容量过大.会增加增容费用同时变压器还有一定的电能损耗从经济的角度出发.对于800~1000kW以上的风机、水泵等电机.建议采用6kv或10kV直接高一高方式的高压变频器:对于40O~800kW的电机.建议采用6kV/660v进线变压器、660V高压变频器及660V电动机:对于400kW以下的电动机.宜采用高一低方案.即采用6kV/380V降压变压器.380V级变频器及380V电动机.在某企业工程中,S0风机为l400kW.电网电压为10kV,综合比较,选择了直接高一高变频调速方案为了充分保系统的可靠性.变频器同时加装工频旁路装置。 变频器异常,不能正常运行时.电机可以自动切换到工频运行状态下运行.以保证生产的需要.其一次系统接线。
QF为用户侧高压开关柜内断路器,K1、K2、K3为同一柜内真空接触器;QS1、QS2为同一柜内隔离开关,与变频器配套提供。K2、K1电气互锁,以防止高压工频电反送人高压变频器。
在变频运行时,手动合隔离开关OS1、OS2,此时高压变频器输出开关接点允许用断路器QF合闸。QF合闸后,在DCS(或PLC)上可启动高压变频器,高压变频装置自动合K1、K2真空接触器。
当高压变频装置本体故障(如每相故障单元数大于2、高压变频器功率单元**温、散热冷却风机故障),高压变频器自动分开K1、K2,待电机电压衰减到额定电压的1O%左右,延时合K3高压变频装置自动切换到工频继续运行.以提高系统的可靠性变频到工频切换大约在3s以内完成。
当高压变频器检测到电机故障(如三相电流不平衡、三相电压不平衡、过流、过载),高压变频器自动封锁脉冲停止输出,并跳开真空接触器K1、K2、K3,同时输出跳闸接点用于跳开断路器QF。
高压变频器技术特点
目前高压变频器的主电路拓扑方面主要有3电平(或更多电平)电压型高压变频器和单元串联多电平电压型高压变频器。罗宾康HARMONY系列、国产高压变频器多采用单元串联多电平电压型高压变频器,现以其为例.阐述高压变频器技术特点变频器主要由移相变压器、功率模块和控制器组成[1]。
(1)系统结构:高压变频调速系统的结构见图2,由移相变压器、功率单元和控制器组成。如:10kV系列有24个功率单元.每8个功率单元串联构成一相。每个功率单元结构上完全一致,可以互换。其电路结构见图3,其为基本的交一直一交单相逆变电路.整流侧为二极管三相全桥.通过对IGBT逆变桥进行正弦PWM控制。
(2)输入侧结构:输入侧由移相变压器给每个功率模块供电,移相变压器的副边绕组分为3组,根据电压等级和模块串联级数,一般由24脉冲系列、3O脉冲系列、42脉冲系列、48脉冲系列等构成多级相叠加的整流方式,可以大大改善网侧的电流波形(网侧电压电流谐波指标满足IEEE519一l992和GBT/14549-93的要求).使其负载下的网侧功率因数接近1,*任何功率因数补偿、谐波抑制装置。由于变压器副边绕组的独立性.使每个功率单元的主回路相对独立.类似于常规低压变频器.便于采用现有的成熟技术。
(3)输出侧结构:输出侧由每个功率模块的U、V输出端子相互串接而成星型接法给电机供电.通过对每个单元的PWM波形进行重组.可得到阶梯正弦PWM波形。这种波形正弦度好dv/dt小.对电缆和电机的绝缘无损坏.无须输出滤波器就可以延长输出电缆长度.可直接用于普通电机。同时.电机的谐波损耗大大减少.负载机械轴承和叶片的振动。当某一个功率模块出现故障时.通过控制使输出端子短路.可将此单元旁路退出系统.变频器可降额运行.由此可避免很多场合下停机造成的损失。
(4)控制器:控制器由高速单片机、嵌入式人机界面和PLC共同构成单片机实现PWM控制、嵌人式人机界面提供友好的全中文bbbbbbS监控和操作界面.同时可以实现远程监控和网络化控制内置PLC则用于柜体内开关信号的逻辑处理.可以和用户现场灵活接口.满足用户的特殊需要。变频器可运行于闭环模式或开环模式。在开环模式下.运行频率南界面设定或通过DCS(或PLC)设定(数字方式或模拟方式)在闭环模式下。可以设定并调节被控量(比如压力)的期望值.变频器根据被控量的实际值自动调节变频器的输出频率.控制电机的转速.使被控量的实际值自动逼近期望值控制器可与上级DCS系统直接连接.对变频器进行启动、停车、急停、报警或设定运行频率。
应用效果
主要应用效果如下:①使用变频器后风机可以实现变频软起动.避免了起动电流的冲击.不仅对电网没有任何冲击,而且还可以随时起动或停止;②使用变频器后,风机的送风量不再需要由风门来调节.而是由变频器通过变频调节风机的转速来实现.调节范围可以从0%~l00%.可以根据生产需要随意调节风量,减少了不必要的浪费:③变频节能运行,节约了大量能源使用变频器后.不再使风机一直处于满负荷工作状态.节能率非常高:④由于高压变频器能平滑调节电机负载的转速.使之与原来相比在较低转速下运行.从而大大减少了负载以及电机的机械磨损,同时降低了轴承、轴瓦的温度,有效减少了检修费用,延长了设备的使用寿命:⑤高压变频器为高一高电压源型单元串联多电平结构.功率因数可高达0.95.不仅*功率补偿.还可提高电网的功率因数.减少了无功损失.减少了线损:⑥系统完善的监控性能和高可靠性提高了工作效率.可实现参数的实时恒定运行.提高了系统运行的安全稳定性.减少了检修和维护的工作量。
高压变频器的使用不仅能取得显着直接的经济效益,还具有较好的间接经济效益。从节能角度看.在SO2风机中采用高压变频器调速.年节电率能达到30%以上。目前在各行各业.如火力发电、城市供水、石油、化工、冶金、水泥等行业也越来越多的得以应用,应用前景十分广阔。PLC控制技术、Profibus总线技术和高压变频技术的**结合.使得集成自动化程度高.运行稳定,操作简单,节能效果更加明显。
1 引言
在现代化的工业生产设备中,有大量的数字量及模拟量的控制装置,例如电机的启停,电磁阀的开闭,产品的计数,温度、压力、流量的设定与控制等,而PLC技术是解决上述问题的较有效、较便捷的工具,因此PLC在工业控制领域得到了广泛的应用。下面就PLC工业控制系统设计中的问题进行探讨。
2 PLC系统设备选型
PLC较主要的目的是控制外部系统。这个系统可能是单个机器,机群或一个生产过程。不同型号的PLC有不同的适用范围。根据生产工艺要求,分析被控对象的复杂程度,进行I/O点数和I/O点的类型(数字量、模拟量等)统计,列出清单。适当进行内存容量的估计,确定适当的留有余量而不浪费资源的机型(小、中、大形机器)。并且结合市场情况,考察PLC生产厂家的产品及其售后服务、技术支持、网络通信等综合情况,选定价格性能比较好的PLC机型。
目前市场上的PLC产品众多,国外**品牌有德国的SIEMENS;日本的 OMRON、MITSUBISHI、FUJI、Panasonic;美国的GE;韩国的LG等。国产品牌有研华、研祥、合力时等。近几年,PLC产品的价格有较大的下降,其性价比越来越高。PLC 的选型应从以下几个方面入手。
2.1 确定PLC 控制系统的规模
依据工厂生产工艺流程和复杂程度确定系统规模的大小。可分为大、中、小三种规模。
小规模PLC控制系统:单机或者小规模生产过程,控制过程主要是条件、顺序控制,以开关量为主,并且I/O点数小于128 点。一般选用微型PLC,如SIEMENS S7-200等。
中等规模PLC控制系统:生产过程是复杂逻辑控制和闭环控制,I/O点数在128——512 点之间。应该选用具有模拟量控制、PID控制等功能的PLC,如SIEMENS S7-300等。
大规模PLC控制系统:生产过程是大规模过程控制、DCS系统和工厂自动化网络控制,I/O点数在512点以上。应该选用具有通信联网、智能控制、数据库、中断控制、函数运算的高档PLC,如SIEMENS S7-400等, 再和工业现场总线结合实现工厂工业网络的通讯和控制。
2.2 确定PLC I/O 点的类型
根据生产工艺要求,分析被控对象的复杂程度,进行I/O点数和I/O点的类型(数字量、模拟量等)统计,列出清单。适当进行内存容量的估计,确定适当的留有软硬件资源余量而不浪费资源的机型(小、中、大型机器)。
根据PLC输出端所带的负载是直流型还是交流型,是大电流还是小电流,以及PLC输出点动作的频率等,从而确定输出端采用继电器输出,还是晶体管输出,或品闸管输出。不同的负载选用不同的输出方式,对系统的稳定运行是很重要的。
电磁阀的开闭、大电感负载、动作频率低的设备,PLC输出端采用继电器输出或者固态继电器输出;各种指示灯、变频器/数字直流调速器的启动/停止应采用晶体管输出。
2.3 确定PLC编程工具
(1) 一般的手持编程器编程。 手持编程器只能用商家规定语句表中的语句表(STL)编程。这种方式效率低,但对于系统容量小、用量小的产品比较适宜,具有体积小、价格低、易于现场调试等优点。 这主要用于微型PLC的编程。
(2) 图形编程器编程。图形编程器采用梯形图(LAD)编程,方便直观,一般的电气人员短期内就可应用自如,但该编程器价格较高,主要用于微型PLC和中档PLC。
(3) 计算机加PLC软件包编程 。这种方式是效率较高的一种方式,但大部分公司的PLC 开发软件包价格昂贵,并且该方式不易于现场调试,主要用于中高档PLC系统的硬件组态和软件编程。
3 PLC控制系统的设计
PLC 控制系统设计包括硬件设计和软件设计。
3.1 PLC控制系统的硬件设计
硬件设计是PLC控制系统的至关重要的一个环节,这关系着PLC控制系统运行的可靠性、安全性、稳定性。主要包括输入和输出电路两部分。
(1) PLC控制系统的输入电路设计。PLC供电电源一般为AC85—240V,适应电源范围较宽,但为了抗干扰,应加装电源净化元件(如电源滤波器、1:1隔离变压器等);隔离变压器也可以采用双隔离技术,即变压器的初、次级线圈屏蔽层与初级电气中性点接大地,次级线圈屏蔽层接PLC 输入电路的地,以减小高低频脉冲干扰。
PLC输入电路电源一般应采用DC 24V, 同时其带负载时要注意容量,并作好防短路措施,这对系统供电安全和PLC安全至关重要,因为该电源的过载或短路都将影响PLC的运行,一般选用电源的容量为输入电路功率的两倍,PLC输入电路电源支路加装适宜的熔丝,防止短路。
(2) PLC控制系统的输出电路设计。依据生产工艺要求,各种指示灯、变频器/数字直流调速器的启动停止应采用晶体管输出,它适应于高频动作,并且响应时间短;如果PLC 系统输出频率为每分钟6 次以下,应可以选择继电器输出,采用这种方法,输出电路的设计简单,抗干扰和带负载能力强。
如果PLC输出带电磁线圈等感性负载,负载断电时会对PLC的输出造成浪涌电流的冲击,为此,对直流感性负载应在其旁边并接续流二极管,对交流感性负载应并接浪涌吸收电路,可有效保护PLC。
当PLC扫描频率为10次/min 以下时,既可以采用继电器输出方式,也可以采用PLC输出驱动中间继电器或者固态继电器(SSR),再驱动负载。
对于两个重要输出量,不仅在PLC内部互锁,建议在PLC外部也进行硬件上的互锁,以加强PLC系统运行的安全性、可靠性。
对于常见的AC220V交流开关类负载,例如交流接触器、电磁阀等,应该通过DC24V微小型中间继电器驱动,避免PLC的DO接点直接驱动,尽管PLC手册标称具有AC220V交流开关类负载驱动能力。
(3) PLC控制系统的抗干扰设计。随着工业自动化技术的日新月异的发展,晶闸管可控整流和变频调速装置使用日益广泛,这带来了交流电网的污染,也给控制系统带来了许多干扰问题,防干扰是PLC控制系统设计时必须考虑的问题。一般采用以下几种方式:
隔离:由于电网中的高频干扰主要是原副边绕组之间的分布电容耦合而成,所以建议采用1:1**隔离变压器,并将中性点经电容接地。
屏蔽:一般采用金属外壳屏蔽,将PLC系统内置于金属柜之内。金属柜外壳可靠接地,能起到良好的静电、磁场屏蔽作用,防止空间辐射干扰。
布线:强电动力线路、弱电信号线分开走线,并且要有一定的间隔;模拟信号传输线采用双绞线屏蔽电缆。
3.2 PLC 控制系统的软件设计
在进行硬件设计的同时可以着手软件的设计工作。软件设计的主要任务是根据控制要求将工艺流程图转换为梯形图,这是PLC应用的较关键的问题,程序的编写是软件设计的具体表现。在控制工程的应用中,良好的软件设计思想是关键,优秀的软件设计便于工程技术人员理解掌握、调试系统与日常系统维护。
(1) PLC控制系统的程序设计思想。由于生产过程控制要求的复杂程度不同,可将程序按结构形式分为基本程序和模块化程序。
基本程序:既可以作为独立程序控制简单的生产工艺过程,也可以作为组合模块结构中的单元程序;依据计算机程序的设计思想,基本程序的结构方式只有三种:顺序结构、条件分支结构和循环结构。
模块化程序:把一个总的控制目标程序分成多个具有明确子任务的程序模块,分别编写和调试,最后组合成一个完成总任务的完整程序。这种方法叫做模块化程序设计。我们建议经常采用这种程序设计思想,因为各模块具有相对独立性,相互连接关系简单,程序易于调试修改。特别是用于复杂控制要求的生产过程。
(2) PLC控制系统的程序设计要点。PLC控制系统I/O分配,依据生产流水线从前至后,I/O点数由小到大;尽可能把一个系统、设备或部件的I/O信号集中编址,以利于维护。定时器、计数器要统一编号,不可重复使用同一编号,以确保PLC工作运行的可靠性。
程序中大量使用的内部继电器或者中间标志位(不是I/O位),也要统一编号,进行分配。
在地址分配完成后,应列出I/O分配表和内部继电器或者中间标志位分配表。
彼此有关的输出器件,如电机的正/反转等,其输出应连续安排,如Q2.0/Q2.1等。
(3) PLC控制系统编程技巧。PLC程序设计的原则是逻辑关系简单明了,易于编程输入,少占内存,减少扫描时间,这是PLC 编程必须遵循的原则。下面介绍几点技巧。
PLC各种触点可以多次重复使用,*用复杂的程序来减少触点使用次数。
同一个继电器线圈在同一个程序中使用两次称为双线圈输出,双线圈输出容易引起误动作,在程序中尽量要避免线圈重复使用。如果必须是双线圈输出,可以采用置位和复位操作(以S7-300为例如SQ4.0或者 RQ4.0)。
如果要使PLC多个输出为固定值 1 (常闭),可以采用字传送指令完成,例如 Q2.0、Q2.3、Q2.5、Q2.7同时都为1,可以使用一条指令将十六进制的数据0A9H直接传送QW2即可。
对于非重要设备,可以通过硬件上多个触点串联后再接入PLC输入端,或者通过PLC编程来减少I/O点数,节约资源。例如:我们使用一个按钮来控制设备的启动/停止,就可以采用二分频来实现。
模块化编程思想的应用:我们可以把正反自锁互锁转程序封装成为一个模块,正反转点动封装成为一个模块,在PLC程序中我们可以重复调用该模块,不但减少编程量,而且减少内存占用量,有利于大型PLC 程序的编制。
4 PLC控制系统程序的调试
PLC控制系统程序的调试一般包括I/O端子测试和系统调试两部分内容,良好的调试步骤有利于加速总装调试的过程。
4.1 I/O端子测试
用手动开关暂时代替现场输入信号,以手动方式逐一对PLC输入端子进行检查、验证,PLC输入端子的指示灯点亮,表示正常;反之,应检查接线或者是I/O点坏。
我们可以编写一个小程序,在输出电源良好的情况下,检查所有PLC输出端子指示灯是否全亮。PLC输入端子的指示灯点亮,表示正常。反之,应检查接线或者是I/O点坏。
4.2 系统调试
系统调试应首先按控制要求将电源、外部电路与输入输出端子连接好,然后装载程序于PLC中,运行PLC进行调试。将PLC与现场设备连接。在正式调试前全面检查整个PLC控制系统,包括电源、接地线、设备连接线、I/O连线等。在保证整个硬件连接正确无误的情况下即可送电。
把PLC控制单元的工作方式设置为“RUN”开始运行。反复调试可能出现的各种问题。在调试过程中也可以根据实际需求对硬件作适当以配合软件的调试。应保持足够长的运行时间使问题充分暴露并加以纠正。调试中多数是控制程序问题。一般分以下几步进行:
(1) 对每一个现场信号和控制量做单独测试;
(2) 检查硬件/修改程序;
(3) 对现场信号和控制量做综合测试;
(4) 带设备调试;
(5) 调试结束。
5 结束语
PLC控制系统的设计是一个步骤有序的系统工程,要想做到熟练自如,需要反复设计和实践。本文是PLC控制系统的设计和实践经验的总结,在实际应用中具有良好的效果。
产品推荐