产品描述
西门子模块6ES7211-0AA23-0XB0原装库存
1、 引言
可编程控制器(Programmable Logic Controller)简称PLC或PC,是一种以微处理器为核心器件的过程控制装置,主要用于生产过程中按时间顺序控制或逻辑控制的场合,以取代复杂的继电器控制装置。PLC一般采用梯形图(LAD)、功能块图(FBD)、指令表和顺序功能表图(SFC)编程,可以方便地通过改变控制程序实现系统的改进和扩充,不必改变硬件设备,具有良好的柔性。它从较初的逻辑控制、顺序控制已发展成为具有逻辑判断、定时、计数、记忆和算术运算、数据处理、联网通讯及PID回路调节等功能的现代PLC。PLC系统与通用计算机可直接或通过通讯处理单元、通讯转接器相连构成网络,以实现信息的转换,构成分布式控制系统,系统可由一台计算机与多台PLC构成,以便完成较大规模的复杂控制。它以构成简单、编程简单、可靠性高、有优良的抗干扰能力,适用于恶劣的工业环境等特点,越来越得到广泛的应用。
山西铝厂3#焙烧炉采用丹麦史密斯公司的气态悬浮焙烧炉。焙烧炉是将含水分的氢氧化铝经高温焙烧成工业用氧化铝,它的热能来自四套燃烧站,分别为干燥热发生器、启动热发生器、点火燃烧站和主燃烧站。四套燃烧站都采用德国西门子S5—95U小型可编程控制器,与Honeywell 的系统连接构成整个控制系统。下面以3#焙烧炉的干燥热发生器为例来说明了编程控制器在焙烧炉的应用。
2、S5—95U简介
S5—95U是德国西门子公司开发的SIMATIC S5系列控制器中一种小型控制器,其构成系统模块化,使其体积小而功能强大。它不单独运行,需与其它部件交换数据,与现场设备构成廉价的分布式控制系统。
2.1 组成
S5—95U由电源模板、*处理单元(CPU)、存储器、用户存储器、输入输出模板(I/O)、编程器及外部设备组成。本机有16个数字输入、16个数字输出、8个模拟输入、1个模拟输出、4个中断输入、2个记数输入,可用扩展单元增加其容量,较大扩展到256个数字输入输出,通过接口与过程控制系统及其它PLC通讯,实现指令控制和数据交换。
2.2 程序的编程及结构
S5—95U的控制功能是靠程序的执行来实现的。通过用梯形图、语句表在个人计算机上编程,也可通过SIMATIC编程器用语句表编程,然后装载到PLC的存储器中。程序采用STEP5语言编程,模块化结构。结构化编程可完成复杂的任务,它把整个程序分成一个个独立的程序块,这样可使编程简单、容易修改,能使程序部分标准化,程序测试调试简便。有五种块类型:(1)组织块OB(组织管理程序)用以表示操作系统和应用程序之间的接口。分两大类,一类由系统程序调用,另一类由用户调用。由系统调用的组织块用以控制循环、中断驱动和定时驱动程序的执行,如可编程控制器的重新启动和设备出错的恢复等功能块。由用户调用的组织块如OB3触发扫描时间、OB251PID控制算法,它集成在操作系统中。组织块不是应用程序的一部分,因而不能被读或修改。(2)顺序块SB(给顺序控制编程的特殊块)(3)程序块PB(经结构化处理的应用程序所产生的块)一些主要程序块应能提供一个应用程序的总貌,与各种工艺相关的功能则在不同的次级程序块中被编程。应用程序大部分都由程序块组成。(4)功能块FB(一个控制程序功能需补充操作或用于实现重复使用和特别复杂的功能)它在程序存贮中只存放一次而可重复调用,每次调用可赋于不同的参数。其类型有可编程功能块、集成入操作系统的功能块和标准化功能块。(5)数据块(存储处理控制程序所需的数据)
2.3 程序的扫描
应用程序扫描一般是循环扫描。在启动程序之前,输入模板的信号被读出并传送到过程输入映象。在执行程序后,过程输出映象的信号状态被传送给输出模板,然后开始一新的程序扫描。它的扫描周期由控制程序的长短来决定。此外,还有中断控制程序处理和时间控制程序处理。
2.4 程序的装载和存贮
程序装载到PLC有两种方法:一种是以编程器在线装载,另一种是以存贮器子模板装载,分自动和手动装载。自动程序装载是程序由存贮器子模板自动装载到PLC的程序存贮器中。手动程序装载是程序由存贮器子模板拷贝到PLC的程序存贮器中。
存贮时,程序从PLC的程序存贮器拷贝到PLC的程序存贮器中。
3、工艺流程及控制要求
3.1 工艺流程
湿的氢氧化铝进入文丘里干燥器(由干燥热发生器提供热能),物料水分被蒸发后,被气流带走,文丘里干燥器的出口温度大约控制在130—160℃范围内。干燥热发生器的好坏直接影响氧化铝的提产。
3.2 控制要求
(1) 点火过程控制
干燥热发生器的点火过程控制是一典型的顺序控制。其启动顺序如下:
A 煤气阀V02到启动位置,风机M12启动。
B 9秒后,风门M11到较大。
C 40秒后,风门M11调到启动位置。
D 煤空阀V05关,9秒后,泄漏控制开始,运行18秒。
E 检漏阀V04开,煤气喷入,点打火,燃烧运行,火焰连续监测。
(2) 温度控制
干燥热发生器主要靠调节进入文丘里干燥器的煤气流量来实现温度的控制
、控制功能的实现4.1 顺序控制及逻辑控制
顺序控制是可编程控制器的主要功能。以前顺序控制是采用继电器、计数器、阀门等机诫设备来实现。S5—95U利用较基本的逻辑元素和运算来实现逻辑控制功能,利用定时器、记时器来实现时间控制功能。干燥热发生器的程序包括主顺序程序块、风门电机(M11/M12)控制程序块、阀门(V02/V03/V04)控制程序块、煤气捡漏控制程序块、报警联锁程序块、模拟量的处理等几部分程序。
主程序循环扫描,通过主程序调用其它程序。
现场报警会引起启动过程中断。如电机M12报警、阀V03 V04 V05报警、火焰报警、点位置报警、点电磁阀报警等。过程报警会引起停车。如煤气压力P05报警、煤气流量报警、燃烧风流量报警等。报警信号不仅输出到继电器,同时也输出到可编程控制器的控制面板的指示灯。
干燥热发生器的起停与焙烧炉其它设备有联锁,该联锁通过系统中IPC620的逻辑控制实现,并直接输出到可编程控制器的联锁指示灯。
4.2 模拟量的控制及处理
(1) V02阀定位器控制,通过自控系统中回路调节实现
V02阀在点火过程中,都处在启动位置,燃烧运行后,通过系统给定值来自动增减阀门,实现自动调节。
(2) 燃烧风风门的控制,通过S5—95U可编程控制器实现
燃烧风风门的控制是根据检测的煤气流量值,经模拟量处理后,按一定的对应关系,由S5—95U计算出风门开度,然后输出到风门。具体处理过程如下:
A 煤气检测流量FT01(脉冲信号)转换成煤气流量(电流信号)
B 煤气流量值的修正
C 据修正后的标准流量FI01计算出风门控制量FC11
(3) 模拟量的处理
S5—95U可编程控制器只做**运算,它的结构相对比较简单,但程序设计比较麻烦。在解决实际问题时,为不导致**数溢出,必须在编制程序时,为参加运算的数选择适当的比例因子,使参加运算的数和中间结果的**值都符合**表示法的形式,算出的得数还需程序人员还原。它的数字量一般都是二进制码的16位**数,可以直接使用STEP5操作进行加减和比较运算。而标准功能块则用于这些值的乘除运算。所有模拟量的读入和输出都通过模拟输入输出模板和标准功能块FB250读入和FB251输出,其数据都存入数据块中。模拟输入模板把模拟过程信号转换成CPU能够处理的数字值,模拟输出模板则实现相反的功能。如模拟输入量有煤气压力P05、煤气流量F01、风流量FT11、阀位反馈值、煤气温度T01、煤气压力P01等,模拟输出量有阀位设定ZY01、面板显示的流量值FI01、面板显示风流量FI11等。
5、功能块的应用
5.1 功能块的特点
功能块可用处理器的全部操作指令系统对一个功能块编程,只能用语句表对功能块编程和存档,可用图形表示,可给功能块赋参数,功能块具**称等特点。因此,功能块可充分利用处理器,但另一方面,功能块不如程序块那样容易编程。
5.2 功能块的编程
功能块采用语句表用编程器来编程。功能块分为两大类:即带块参数的功能块和不带功能块的功能块。无块参数的功能块编程在本质上同程序块的编程基本一样,随着编程器提示,输入功能块名(包含8个以内的字符)。带块参数的功能块,则在输入块名以后应该*这些块参数的名字、参数类型和数据类型。当所有块参数都引入后,再用控制功能的编程继续输入。
5.3 标准功能块的应用
标准功能块都集成在CPU操作系统中,执行速度较快,且不占用户存储空间,常用的标准功能块有模拟量读入功能块FB250 RLG: AE、模拟量输出功能块FB251 。此外,可编程在运算过程中经常还会用到16位**码变换器FB241 COD:16、16位二进制乘法,FB242 MUL:16、16位二进制除法,FB243 DIV:16、**数到浮点数转换FB15、浮点数到**数转换 FB16、浮点数相乘FB19、浮点数相除FB20等标准功能块。还有一种由用户编程的功能块,如V02调节阀自动增减功能块FB21和FB22。
6、结束语
实践证明,PLC是实现现场自动化的理想控制器。它的体积小、功能强、程序设计简单、灵活通用、维护方便等一系列优点特别是高可靠性和较强的适应恶劣环境的能力,更是得到用户的**。作为从事工业自动化的技术人员,不但要熟悉各种控制系统的原理和结构,而且还要了解控制对象的工艺过程和控制要求。只有这样,才能设计、安装调试和维护好工业自动控制系统,确保氧化铝生产过程安全和经济稳定运行。
一、PLC技术要素
1. 电力线网络单元(PNU)
它负责控制电力线网络并从单元配电网集成话务。通过适当的电信干线接口,PNU再将话务传至馈电网络。根据馈电网络中使用的不同介质,PNU也可转换来自低压配电网的数据话务。
2. 电源线网络终端(PNT)
它为较终用户PC或其它用户提供适当的接口,如以太网或是USB。为了降,这一独立设备能够和PC或其它设备相集成。
3. 偶合设备(CouplingUnit)
它是将信号传入线路并过滤噪音的。目前它还是一个插销插入电插座的相对独立的设备,今后它可能会和PLC调制解调器集成于一体。PLC调制解调器和PC内的偶合设备的集合体有一天将使PC可以直接在网上运行。
配电网是一种共享介质,即所有与之相连的用户都共享同一"电缆"。在典型的城市配置中,它则转化为与一个变压器相连的大约100到200个用户。PLC系统能够在1Mbps的较佳传输速率下支持80个用户,这一比例是足够的。由PLC技术支持的客户,需要具备一个技术条件,具有很强的带宽分配能力的介质接入控制()层。这就使电力线网络不仅仅能够支持80个Internet用户的数据往复交换,而且能够灵活地适应以不同速率传输的上行和下行数据。
二、数据信号传输技术
1、数字扩频技术(SST)
在目前的实际应用中,为了实现用于家庭或经济产品上的通信与控制网络,需要更为可靠的多用户环境的PL通信技术,扩频载波通信技术就应运而生了。
扩频通信相对于窄带通信而言具有一定技术上的优势,主要表现在抗干扰方面。因为扩频载波信号的带宽通常较大(几十至几百KHz),所以其受干扰的频率范围所占比例相对减小,换句话讲,就是各种噪声仅能影响到一小部分所要传输的信号,而大多数的信号都能够完整、正确的到达目的地,所以对于各种类型的干扰都具有较强的抵抗性。对于较常见的脉冲噪声而言,尽管窄带通信中的具有较窄的通带,使得仅有一小部分噪声能进入,但由于此类接收装置中的滤波器具有高品质因素,瞬间的脉冲噪声会使其发生自干扰,而引起它对传输来的信号产生误操作;而使用低品质因素的滤波器又会使通带带宽加大,令更多的噪声进入,所以窄带通信对脉冲噪声的抵抗性较差。
然而利用扩频技术,当接收到具有较大能量的噪声信号时,会在噪声的高能部分到达时自动停止工作,所以接收方仅对一小部分受影响的信号进行纠错解码即可;另外,扩频接收设备使用的滤波器具有较低的品质因素,因而不会造成系统自干扰,所以扩频技术具有较强的抗噪能力。
一般来讲,目前实现扩频有三种途径:即直接序列调制、跳频载波和利用Chirps扫
描频率进行载波。
1) 直接序列调制(Direct-Sequence Modulation)
此技术是将信号的能量平均分布于整个频带内,并通过伪随机序列将数据流倍加来使信号得以扩频,此序列具有数倍于所传信号二进制数据位率的符号速率。
2) 跳频载波(Frequency-Hopping)
即扩频信号在某一频率通过延续一段时间,来代表数据的一位、几位或是一位的一部分。当信号在某一频率上受到干扰时,信号就可切换到扩频带宽内的其他频率上去,因而大大降低了其受干扰的程度,这种方法对于CW干扰有较强的抵抗性。
3) 利用扫描频率的Chirps进行载波
此方法多用于类似于以太网的CSMA网络,它利用一系列短促的、可自同步的扫描频率chirps作为载体,每个chirps一般持续100 us,它代表了较基本的通信符号时间(UST)。这些chirps覆盖了100-400 KHz的频带,并总是以200-400 Khz的频率开始,继而以100-200 KHz的频率结束。由于chirps信号的线性扫描带宽比信号带宽要大得多,其线性加速度是较高的,而CW干扰的频率加速度一般是稳定的,所以只要将滤波器设计成只能通过具有特定角加速度的信号,就可以将CW干扰排除在外。另外,此种chirps波形还具有很强的自相关特性,这种模糊逻辑的相关性决定了所有连接在网络上的设备,可以同时识别从网上任意设备发出的这种*特波形,并且不需要在发送和接收设备间进行同步。
电力线数字扩频技术可以充分利用传输频带,实现宽带高速。扩频通信可以克服窄带噪声影响和多径影响,因此非常适合电力线通信环境。
SST技术容易实现,自动选择高信噪比频段,抵御瞬间干扰;但码间干扰严重,需要非线形均衡器。
2、正交频分多路复用技术(OFDM)
正交频分多路复用技术采用多路窄带正交子载波,同时传输多路数据,每路信号的码元时间较长,可以避免码元间干扰。通过动态选择可用的子载波,该技术可以减少窄带干扰和频率谷点的影响。
OFDM技术的应用可以追溯到本世纪六十年代,主要用于通信系统。但是,一个OFDM系统的结构非常复杂,从而限制了其进一步推广。直到70年代,人们提出了采用离散傅立叶变换来实现多个载波的调制,以软件方法实现复杂的OFDM处理,简化了系统结构,使得OFDM技术更趋于实用化。近年来,由于数字信号处理(DSP)技术的飞速发展,OFDM作为一种可以有效对抗信号波形间干扰的高速传输技术已经被广泛应用于民用通信系统中。
OFDM技术已应用于高速MODEM和无线调频信道上的宽带。*四代移动通信(4G)中将采用OFDM技术,这使速率可以达到10Mbit/s,目前在无线局域网中也已采用了该技术。正在筹备之中的数码地面波电视播放以及正在开发中的高速无线LAN"IEEE 802.11a"都预定采用这项新技术。
正交频分多路复用技术可以提高电力线网络传输质量,即便是在配电网受到严重干扰的情况下,OFDM也可提供高带宽并且保带宽传输效率,而且适当的纠错技术可以确保可靠的。在OFDM系统中各个子信道的载波相互正交,于是它们的频谱是相互重叠的,这样不但减小了子载波间的相互干扰,同时又提高了频谱利用率,还可以抵制等幅波干扰。但OFDM收信机复杂,成本高,要求收信大动态范围的线性放大,对瞬间干扰敏感。
三、与其它接入技术相比,电力线宽带接入网络具有以下优势:
1) 充分利用现有的低压配电网络基础设施,*任何布线,是一种"No New Wires"技术,节约了资源。*挖沟和穿墙打洞,避免了对建筑物和公用设施的破坏,同时也节省了人力。
2) 可以为用户提供高速因特网访问服务、话音服务,从而为用户上网和打电话增加了新的选择,有利于其它电信服务商改善服务、降低价格。
3) 对家庭联网提供支持,使人们可以尽享由PLC技术带来的家庭音、视频网络,多人对抗游戏等。
4) 是家居自动化的生力军,通过遍布各个房间的墙上插座将智能家电联网,提前享用数字化家庭的舒适和便利。
5) 利用PLC的*在线连接,构建的防火、防盗、防有毒气体泄漏等的保安监控系统,让上班族高枕**;构建的急救系统,让家有老人、孩子和病人的家庭倍感放心。利用PLC也可提供独立的数字化社区服务和电子商务,实现家庭办公和远程家电控制。
6) 远程自动读出水、电、气表数据,使公用事业公司节省大量费用,也方便了用户
一、引言
**以来,我国的纺织机械行业的自动化技术有较明显的提高,纺织设备的大部分机器采用了变频调速技术、可编程控器(PLC)技术,也已有相当一部分的产品采用了工控机、单片机、交流伺服系统、触摸屏人机界面以及现场总线技术,实现了机械产品的机电一体化,为纺织机械的自动化、高速化、连续化铺平了道路。
二、电脑绣花机的原理
首先,用刺绣软先件制版,生成样版后,将载有刺绣程序及花样的盘片先后分别放入电脑磁盘驱动器中,在程序控制下,电脑将花样坐标值换成与绸框X、Y方向位移量量相当之电信号,送到X、Y单片机系统进行电机升降速处理后,输出三相六拍信号,线电机的功放箱进行功率放大,两个X、Y步进电机,带动绸框完成X、Y间的进给运动;同时变频器驱动变频电机,带动机针作上下运动,从而使刺绣连续地进行下去。
变频电机通过皮带等驱动机头传动机构旋转,机头的特定机构使引线机构和机针带头着面线作出上、下运动,穿刺面料;钩线机构中的旋梭旋转,使面线绕过藏有底线梭壳;挑线机构运动,输送面线,收紧线迹,准备下一个线迹的面线线段。X、Y步进电机通过同步齿形带等机构带动绸框和面料作平面运动。将面料上每个待绣线迹点送往机针刺绣,机针上下运动的速度与绸框移动的方向、移动量以及移动速度的协调配合运动,使面线和底线绞合,在面料上作出双线锁式线迹。当刺绣连续地进行下去,完成花样的电脑刺绣。
三、中源变频器ZY-G800系列在电脑绣花机上的应用
ZY-G800中源变频器应用于电脑绣花机,有良好的运行特性,这是因为矢量控制型变频器本身具有良好的产品性能。
1)高速处理器提供更快的频率响应
ZY-G800变频器采用32位电机驱动**CPU,提供高控制精度、快速频率响应及良好的动态特性。电脑绣花机要求通过LCD设定主轴的转速,经过单片机处理后,由D/A转换模块输出0-10V的模拟量信号到变频器,变频器根据模拟量信号的大小,快速响应到达所设转速,满足刺绣时多变的要求。
2)空间电压矢量控制提供低频时高转矩输出
电机与主轴之间采用1:3的带传动,在基频以下改变频率为恒转矩输出。以往使用V/F控制的变频器,由于考虑到负载的启动转矩大,要设定相应的转矩提升准位,如果转矩提升设置过高,在低频时轻载时会过激磁,引起电流过大,电机发热,严重影响到设备的正常运行。
采用ZY-G800变频器,可以通过参数设置,保证电机在低频时具有良好的转矩输出,满足绣花机在低速时连续走线。
3)良好的刹车能力实现的准停
由于在刺绣过程中,需要移动绸框和面料来完成整幅画面。移动过程中,要求停留在较高位。这一要求就需要用变频器的直流刹车能力来实现。
产品推荐