7
西门子6ES332-7ND02-0AB0
原系统分析
桥式起重机(天车)是一种用来起吊、放下和搬运重物、并使重物在一定距离内水平移动的起重、搬运设备,在生产过程中有着重要应用。郑州北车辆段5吨桥式起重机,原设备电气驱动系统分为起重机升降、小车、大车三部份。其中起重机升降由一台13kW的绕线式异步电动机驱动,大车由两台4kW绕线式异步电动机、小车由一台2.5kW绕线式异步电动机驱动。在原传动控制中,采用转子串接电阻的调速方式。由于工作环境差,粉尘和有害气体对电机的集电环、电刷和接触器腐蚀性大,加上工作任务重,实际过载,冲击电流偏大,容易造成电动机触头烧损、电刷冒火、电动机及转子所串电阻烧损和断裂等故障,影响现场生产和安全,工人维修量和产生的维修费用也很高。并且原调速方式机械特性较差,调速不够平滑,所串电阻长期发热浪费能量。
针对现有技术存在的不足,本次改造的起重机采用PLC和变频器技术,以程序控制取代继电器----接触器控制,交流电动机调速方式采用变频调速,进而实现了起重机的半自动化控制。
改造方案 交流电动机的调速方式很多,针对上述现有技术存在的不足,综合各种性能较佳者为变频调速方式。
1、拖动系统
a、电动机选型
大车与小车用电动机可选用普通的笼型转子异步电动升降用电动机由于要求比较高,应选用变频**的笼型转子异步电动机。原设备系统采用的是绕线式异步电动机,出于经济方面的考虑,通过短接转子回路也能进行使用。
b、调速方法
采用具有矢量控制功能的变频调速系统。变频后转速可以分档控制,一般采用6段速度运行,从低到高自由切换。
c、制动方式
采用再生制动、直流制动和电磁机械制动相结合的方法。首先,通过变频器调速系统的再生制动和直流制动把运动中的大车、小车和起重机的速度迅速而准确地降到零(使它们停止) ;对于起重机,常常会有重物在半空中停留一段时间(如重物在半空中平移),而变频调速系统虽然能使重物静止,但因设备容易受到外界因素的干扰(如在平移过程中常易出现的瞬间断电),因此,利用电磁制动器进行机械制动仍然是必须的。
2、变频调速系统的控制要点
桥式起重机拖动系统的控制动作包括大车的左、右行走及速度档位;小车的前、后行走及速度档位;起重机的升、降及速度档位等。所有这些,都可以通过PLC进行无触点控制。
桥式起重机控制系统中需要引起注意的是关于防止溜钩的控制。在电磁制动器抱住之前和松开之后的瞬间,较易发生重物由停止状态下滑的现象,称为溜钩。
防止溜钩的控制需要注意的关键问题是:
■ 电磁制动器在通电到断电(或从断电到通电)之间是需要时间的,大约0.6秒(视型号和大小而定)。因此,变频器如过早地停止输出,将容易出现溜钩。
■ 变频器必须避免在电磁制动器抱闸的情况下输出较高频率,以免发生“过流”而跳闸的误动作。
为此,具体控制方法如下:
a、重物高空停止的控制过程
■ 设定一个“停止起始频率”fBS,当变频器的工作频率下降到fBS时,变频器将输出一个“频率到达信号”,发出制动电磁铁断电指令;
■ 设定一个fBS 的维持时间tBB,tBB长短应略大于制动电磁铁从开始释放到完全抱闸所需要的时间;
■ 变频器将工作频率下降至零。
b、重物升降的过程
■ 设定一个“升降起始频率”fRD,当变频器的工作频率上升到fRD时,将暂停上升。为了确保当制动电磁铁松开后,变频器已经能控制住重物的升降而不会溜钩,所以,在工作频率达到fRD的同时,变频器将开始检测电流,并设定检测电流所需要的时间tRC;
■ 当变频器确认已经有足够大的输出电流时,将发出一个“松开指令”,使制动电磁铁开始通电;
■ 设定一个fRD的维持时间tRD,tRD的长短应略大于制动电磁铁从通电到完全松开所需要的时间;
■ 变频器将工作频率上升至所需频率。
C、变频器的零速全转矩功能和直流制动励磁功能
艾默生高性能矢量TD3000系列变频器,具备了有效的防止溜钩的一些*特的制动功能。
■ 零速全转矩功能
变频器可以在速度为零的状态下,保持电动机有足够大的转矩。这一功能保证了起重机有升降状态降为零时,电动机能够使重物在空中停止,直到电磁制动器将轴抱住为止,从而防止了溜钩。
■ 起动前的直流强励磁功能
变频器可以在起动之前自动进行直流强励磁,使电动机有足够大的转矩(有速度传感器的矢量控制:200%rpm;无速度传感器的矢量控制:150%/0.5Hz),维持重物在空中的停住状态,以保证电磁制动器在释放过程中不会溜钩。
桥式起重机采用变频调速系统介绍
1、大、小车运行机构
大车为双梁结构,分别由两台4KW电动机拖动,用一台较大的变频器(15KW)供电;小车由单台2.5KW电动机拖动,并且由单独的变频器(3.7KW)供电。
大、小车变频器都预置为V/F控制方式。3、制动单元和制动电阻
本系统对于重物下降时电动机再生的电能,采取由变频器外接的制动单元(TD3000系列变频器22KW及其以下机型中,已内置了制动单元;但是所有的制动电阻都需要外接)和制动电阻消耗掉的方式。针对桥式起重机的起重机升降机构起、制动频繁,要求制动的转矩较大,以及下降时制动状态的持续时间较长等特点,因此制动单元用标准配置就可以实现制动过程的功能;制动电阻的额定功率可以稍稍的加大一倍。
选用艾默生紧凑型EC20系列可编程序控制器。PLC 按控制程序、输入控制信号来完成起重机各种工况的协调,并决定起重机的各种工作状态。系统软件设计采用 PLC梯形图语言来编程完成,用 PLC控制工作可靠,扫描速度快,控制非常灵活。
5、变频器选择
采用变频器驱动异步电动机调速,通常应根据异步电动机的额定电流来选择变频器,或者根据异步电动机实际运行中的电流值(较大值)来选择变频器,通常令变频器的额定电流≥(1.05~1.10)电动机的额定电流或电动机实际运行中的较大电流。
I1NV≥(1.05~1.10)IN或(1.05~1.10)Imax
式中I1NV--变频器额定输出电流(A);
IN--电动机的额定电流(A);
Imax--电动机实际较大电流(A)。框架总图。
在此方案中,变频器和液位推动器是靠变频器预先设定的一个频率到达信号使接在液位推动器回路中的接触器的线圈得电,进而让液位推动器回路中接触器的辅助触点闭合和打开联系起来的。操作人员通过起重机升降(升降)操纵联动台分别给其控制的变频器一个起、停、起的信号而让变频器动作。当通过起重机升降联动台给其控制的变频器一个起升的信号后,变频器变频器带动起升电机工作,但刚开始时由于变频器输出的频率还小,而且起升的抱闸电机不会运行,当变频器的输出频率达到预设定的频率后,变频器输出给起升电机的抱闸回路中接触器一个电压让抱闸电机运行松闸,进而完成起重机上升的任务。当起重机下降过程中,变频器的输出频率小于预设定的频率,抱闸系统就会马上抱闸这样避免起重机失速猛的下落而造成的危害伤害。变频器对电机也能时时监控、补偿或报警,给工人使用带来很大的方便,同时变频器的使用不禁节约了能源,而且达到操作灵活方便,。



由于现代数控系统的可靠性越来越高,数控系统本身的故障越来越低,而大部分故障的发生则是非系统本身原因引起的。系统外部的故障主要指由于检测开关、液压元件、气动元件、电气执行元件、机械装置等出现问题而引起的。
数控设备的外部故障可以分为软故障和外部硬件损坏引起的硬故障。软故障是指由于操作、调整处理不当引起的,这类故障多发生在设备使用前期或设备使用人员调整时期。
对于数控系统来说,另一个易出故障的地方为伺服单元。由于各轴的运动是靠伺服单元控制伺服电机带动滚珠丝杠来实现的。用旋转编码器作速度反馈,用光栅尺作位置反馈。一般易出故障的地方为旋转编码器与伺服单元的驱动模块。也有个别的是由于电源原因而引起的系统混乱。特别是对那些带计算机硬盘保存数据的系统。例如,德国西门子系统840C。
例1:一数控车床刚投入使用的时候,在系统断电后重新启动时,必须要返回到参考点。即当用手动方式将各轴移到非干涉区外后,再使各轴返回参考点。否则,可能发生撞车事故。所以,每天加工完后,较好把机床的轴移到安全位置。此时再操作或断电后就不会出现问题。
外部硬件操作引起的故障是数控修理中的常见故障。一般都是由于检测开关、液压系统、气动系统、电气执行元件、机械装置出现侍庖鸬摹U饫喙收嫌行┛梢酝üň畔⒉檎夜收显颉6砸话愕氖叵低忱唇捕加泄收险锒瞎δ芑蛐畔⒈ňN奕嗽笨衫谜庑┬畔⑹侄嗡跣≌锒戏段А6行┕收纤溆斜ň畔⑾允荆⒉荒芊从彻收系恼媸翟颉U馐毙韪荼ň畔⒑凸收舷窒罄捶治饩觥?/P>
例2:我厂一车削单元采用的是SINUMERIK840C系统。机床在工作时突然停机。显示主轴温度报警。经过对比检查,故障出现在温度仪表上,调整外围线路后报警消失。随即更换新仪表后恢复正常。
例3:同样是这台车削中心,工作时CRT显示9160报警“9160 NO PART WITH GRIPPER 1 CLOSED VERIFY V14-5”。这是指未抓起工件报警。但实际上抓工件的机械手已将工件抓起,却显示机械手未抓起工件报警。查阅PLC图,此故障是测量感应开关发出的。经查机械手部位,机械手工作行程不到位,未完全压下感应开关引起的。随后调整机械手的夹紧力,此故障排除。
例4:一台立式加工中心采用FANUC-OM控制系统。机床在自动方式下执行到X轴快速移动时就出现414#和410#报警。此报警是速度控制OFF和X轴伺服驱动异常。由于此故障出现后能通过重新启动,但每执行到X轴快速移动时就报警。经查该伺服电机电源线插头因电弧爬行而引起相间短路,经修整后此故障排除
例5:操作者操作不当也是引起故障的重要原因。如我厂另一台采用840C系统的数控车床,**天工作时完全正常,而第二天上班时却无论如何也开不了机,工作方式一转到自动方式下就报警“EMPTYING SELECTED MOOE SELECTOR”。加工完工件后,主轴不停,机械手就去抓取工件,后来仔细检查各部位都无毛病,而是自动工作条件下的一个模式开关位置错了。所以,当有些故障原因不明的报警出现的话,一定要检查各工作方式下的开关位置。
还有些故障不产生故障报警信息,只是动作不能完成,这时就要根据维修经验、机床的工作原理和PLC运行状况来分析判断了。
对于数控机床的修理,重要的是发现问题。特别是数控机床的外部故障。有时诊断过程比较复杂,但一旦发现问题所在,解决起来比较简单。对外部故障诊断应遵从以下两条原则。首先要熟练掌握机床的工作原理和动作顺序。其次,要会利用PLC梯形图。NC系统的状态显示功能或机外编程器监测PLC的运行状态,一般只要遵从以上原则,小心谨慎,一般的数控故障都会及时排除
1 前言