• 6ES7334-0CE01-0AA0技术参数
  • 6ES7334-0CE01-0AA0技术参数
  • 6ES7334-0CE01-0AA0技术参数

产品描述

产品规格模块式包装说明全新品牌西门子

6ES7334-0CE01-0AA0技术参数


引言
    目前高层在各类城市中比比皆是。为了防止意外火灾,高层建筑一般均设有消防**泵组。但是许多设备都因无专人管理,不能定期试机运行,天长日久就会导致泵体卡死、锈死,所以经常会出现在发生火灾时设备不能充分发挥作用的情况,造成不应有的损失。通常老设备的启动/运行转换控制用的是皮碗真空式定时继电器,其定时时间误差大,橡胶容易老化破损,维护不便。电子式定时继电器也存在类似问题。我们采用OMRON公司的可编程序控制器(PLC)对消防泵组进行控制,实现泵组在备用时定期试运行,消防用水时自动启动。硬件无调整元件,,可靠性高,维护方便。而且可以很容易地根据不同需要进行扩展。这样能够有效地杜绝泵体锈死或消防用水时不能及时加压的事故。 

2 工作原理
    对于一座需要四台15kW消防水泵的高层建筑而言,在没有消防用水需求商,**台水泵启动(星形)10秒钟,运行(三角形)30秒后,停机待命120小时(五天)。待命期间如果没有消防用水,则第二台水泵启动10秒,运行30秒,停机待命120小时,如此周而复始地循环。在有消防用水需求时,泵组立即自动启动,加压供水,充分发挥其应用的作用。 

3 硬件结构与工作过程 
    根据控制对象的具体情况,我们选用OMRON公司的小型可编程序控制器C20P进行控制设计。C20P属于C系列的小型机,共有20个输入/输出点。其中输入点12个,输出点8个,有晶体管、可控硅和继电器三种输出形式。我们选用继电器输出型的。P型机的内部指令十分丰富,能提供近50个定时/计数器供用户使用,对于本设计完**够满足要求。设计中输入点用了5个,8个输出点则全部用完。

    输入信号分别为水流指示器、水压检测和手动输入。其中水压检测和手动输入各占两点。水流指示器的结构原理为:在水管内安装一个带杠杆的橡皮挡板,杠杆一端连接一个微动开关。如果管道内有水流流动,水流就冲开橡皮挡板,其杠杆推动微动开关,使触点的状态发生变化。水压采用电接点压力表进行检测。一般情况下如前述四台泵循环试机运行。一旦发生火警,打开消防喷淋头或者消防水,水流指示器的常开触点闭合,或者按动消防**启动按钮,水泵即逐台按照水压要求启动运转。实际工作中,若**台水泵投入后水压达不到所需压力,压力表低压检测触点断开,第二台水泵自动投入运行。若第二台水泵投入后仍达不到所需压力,即压力表低压检测触点仍不闭合,则第三台水泵自动投入运行。依此类推。若水压**所需压力,压力表高压检测触点闭合,则依次停后启动的水泵,直到水压稳定下来,保持水压恒定在所需的压力范围内。这样可以减小消防人员的操作难度,同时也减小了对管道薄弱环节的威胁。每一台水泵都用两只接触器分别接成星形和三角形结构,用以启动和运行。用水完毕后,水流检测触点断开或者手动按下停水按钮,则重新进入试机循环。 

4 系统软件设计
    PLC的软件设计一般采用梯形图的形式进行编程,直观且简单易学。C系列PLC的指令丰富,提供了48个定时/计数器供用户使用,从而给系统设计带来了很大的方便。在设计中,长时间的定时控制若采用多个定时器级连的方式实现,虽然直观,但略显繁冗。我们在程序中用定时器设计了一个1分钟的时钟作为其他计数器的输入,使得长时间的定时设计更便于实现,控制程序也就更加简洁。在消防用水时为了避免由于水压波动而导致水泵频繁起停,我们在程序中采用了“延时滤波”处理,达到了较好的效果。在为提升水压而增加后续水泵时,为了避免同时投入水泵而对电网造成过大的冲击,也采用了延时的方法,达到了预期的目的。 

5 结束语
    本系统采用可编程序控制器进行控制系统设计,硬件结构简单,廉,响应速度快,性能/价格比很高,和单片机系统相比具有极高的可靠性。经一年多的现场使用考验,性能稳定,运行可靠。另外还可以根据实际需要很方便地进行扩展。对于现代智能楼宇,控制系统还可以通过通讯模块纳入到整个楼宇的监控系统之中,体现出极大的灵活性和适应性,具有极高的实际推广价值。

  某公司于2005年夏天进行锅炉排渣改造,计划每台炉每侧冷渣器的两个事故排渣口出口和正常排渣口出口下设一台刮板输送机,经刮板输送机收集的底渣送至斗式提升机,由斗式提升机经碎渣机破碎后送至原有气力输送系统送至渣仓。 

该系统控制范围包括从冷渣器正常出口以及事故出口开始到原气力输送系统的进口之间的所有设备的控制。 

一、系统描述 

每台冷渣器排渣口,两个事故排渣口和正常排渣口下设一台链斗式输送机和刮板输送机将底渣送至冷渣器外,由斗式提升机提到位于渣斗顶部的破碎机,由破碎机破碎后,进入气力输送系统,由气力输送系统送至渣仓。 

为保证冷渣器运行的正压以及保证热空气不会从事故排渣口排出,在冷渣器一、二室装设压差检测装置,以压差信号来控制事故排渣口插板门开关,从而控制冷渣器内底渣的料高以达到保证冷渣器内热空气不会从事故排渣口排出。 

为保证冷渣器中底渣能从正常排渣口全部排出,将原DN420的正常排渣口扩至DN550。正常排渣口下装设中间渣斗,中间渣斗上设高、低料位计,以料位计控制中间渣斗中料高,从而保证冷渣器中热空气不会排至后续机械输送系统。中间渣斗出口装设插板门和电动给料机,以达从正常排渣口均匀给后续机械输送系统给料。 

考虑到从事故排渣口排出的底渣温度较高,为保证斗式提升机的性,每套系统斗式提升机设两台,一台运行,一台备用;斗式提升机出口设有就地事故排渣口,以保证后续气力输送系统故障时能就地排渣。 

鉴于以上情况,通过采用PLC(可编程控制器)控制系统,解决当前存在的问题。系统的工作原理框图如下: 

系统操作运行分别设有“远程自动”、“远程手动”、“就地手动”三种工作模式。“远程自动”模式为正常的主要运行方式,根据系统满足自动顺序运行的条件,在操作员站(控制室内的触摸屏)上操作完成整个除渣工艺流程。在自动顺序执行期间,出现任何故障或运行人员中断信号,都能使正在运行的程序中断并回到安全状态,使程序中断的故障或运行人员的指令都将在触摸屏上实时显示。当故障排除后,自动控制在确认无误后可再进行启动。系统有丰富的保护和故障界面供操作人员进行操作和分析。 “远程手动”模式为运行人员在触摸屏上点触每一个被控对象。远方控制操作有许可条件,以防止运行人员误动作。在远方手动模式下,系统提供了丰富帮助操作指导和反馈信息,指引操作人员的操作,以防止误操作。“就地手动”模式是运行人员通过就地控制箱操作被控对象,就地操作与远方程控操作之间有相互连锁。 

1、PLC控制系统的特点及组成 

PLC在现代工业控制领域中早己得到了广泛的应用。以PLC的控制功能而言,具有严谨、方便、易编程、易安装、可靠性高等优点。它通用性强,适应面广,特别在数字量输入/输出等逻辑控制领域有无可比拟的优点。PLC具有丰富的逻辑控制指令和高级应用指令,它提供高质量的硬件、高水平的系统软件平台和易学易编程的应用软件平台。另外,PLC即有自身的网络体系又有开放I/0及通讯接口,很容易组建网络并实现远程访问。 

PLC采用的Siemens公司生产的S7-300系列,由于现场的PLC系统与控制室的上位机距离较远(800米左右),因此通讯系统需成对加装RS-485中继器,确保系统运行的稳定性。 

(1) 系统结构及硬件配置 

根据控制需求,CPU模块采用CPU314、数字量输入(DI)采用SM321模块,数字量输出(DO) 采用 SM322模块,模拟量输入(AI) 采用 SM331模块,模拟量输出(AO) 采用 SM332模块以及IM365等模块组成,IM365实现机架扩展,上位机采用Easyview公司MT510T真彩触摸屏进行显示和控制,整个干渣系统的工艺流程及测量参数、控制方式、顺序运行状况、控制对象状态等均能够清楚地显示在触摸屏上,当参数越限报警或控制对象故障或状态发生变化时,以不同的颜色进行显示,使操作人员能够一目了然地了解到系统的运行情况,并实时地根据工艺要求进行系统参数进行调整。 

(2) 控制系统的功能实现 

PLC程序的编制直接关系着底渣系统能否正常工作,而程序设计的关键在于编程者对工艺系统的理解程度和程序编制技术的灵活应用。因此,在程序设计中首先考虑了供气压力调节系统的特点,将程序设计细化,分成多个程序模块,实行模块化编程。这样既可以方便的增加或删除程序模块,便于现场对工艺的调整,又可针对配套设备可控性对不同程序模块进行完善。 

PLC的编程软件采用SIEMENS公司的SIMATIC STEP7 V6软件平台用来完成硬件组态、地址和站址的分配以及编制整个生产过程的控制程序的。上位机软件采用国产软件组态王,全部采用汉化界面,便于系统的开发与操作,该系统运行于bbbbbbs2000中文平台,可实现对生产过程的全面监控,对重要参数形成历史记录,以报表或曲线的形式显示给操作人员。通过VB语言脚本,可以在主控室的上位机显示重要参数的历史趋势、实时趋势,实现联锁调节的手自动切换、操作、压力的高、低限报警、流量数据的显示与累计,满足高生产率的调度需求。 

(3) 现场显示 

现场采用MCC屏进行参数控制,触摸屏程序由组态软件来完成,人机界面采用中文菜单,界面友好,操作方便,功能较强,主要用于现场压力、流量、阀位的显示与操作。可作为操作人员现场操作的依据。 

二、系统实现排渣系统的自动控制和监控 

主要包括如下功能: 

(1) 灵活的操作方式以及强大的系统控制功能:系统可以实现上位机操作、控制柜操作和就地手动操作; 
(2) 报警功能:当温度超过工艺要求,可在现场、就地实现越限报警; 
(3) 简单、方便的参数设定: 压力调节的压力设定值、P、I、D等参数可以在上位机中设定。 

1 、系统控制功能 

(1) 过程控制的功能: 

1)系统对床压实现了PID自动调节控制; 
2)对所采集的模拟信号进行线性化、滤波、工程单位转换处理; 
3)实现了流量信号的温、压补偿,提高了仪表的测量精度。 

(2) 逻辑控制 

联锁逻辑控制实现开/关的控制,逻辑控制及用户自定义功能块等。系统可以实现电磁阀控制以及参数越限报警等功能 

(3) 人机接口 

HMI系统中包含主工艺画面,分系统画面,画面直观、丰富,具备PID在线调节、在线显示功能,包括过程量变化趋势的实时趋势。 

三、软件设计 

根据该系统具体情况,PLC系统软件设计过程中着重要考虑的是以下几个方面: 

(1) 数据采集及工程量转换 
(2) PID算法 
(3) 温压补偿计算以及流量的累积计算 

对于系统中的逻辑控制选用梯形图(LADDER)编程,直观、方便;对于PID回路控制温压补偿计算以及流量的累积计算部分则采用语句表(STL)编程,结构紧凑而又灵活。 PID调节是该系统中较为重要的控制程序,因此特将PID算法作一重点介绍。 

1、PID算法 

STEP7提供了两种常用的PID算法:连续型PID(FB41)和离散型PID(FB42),根据实际要求,选用的是FB41。并在组态王中使用画图功能模拟一个PID调节器的操作面板,完成PID调节控制中的手/自动切换、给定值输入、手动输出值输入、PID参数(比例系数、积分时间)输入等功能。 

PID算法的输出实际上是比例(P)、积分(I)、微分(D)三部分作用之和: 

Mn=MPn+MIn+MDn 
MPn = GAIN(SPn- PVn) 
MPn = GAIN  TS/ TI(SPn- PVn)+ MX 
MDn = GAIN  TD/ TS(PVn-1- PVn) 
Mn:第n次采样时刻的输出值。 
MPn:第n次采样时刻的比例作用,与偏差成正比。 
MIn:第n次采样时刻的积分作用,可以静差,提高控制品质。 
MDn:第n次采样时刻的微分作用,根据差值的变化率调节,可抑制超调。 
SPn:第n次采样时刻的设定值。 
PVn:第n次采样时刻的过程值。 
MX:第n-1次采样时刻的积分作用,每次采样计算后自动刷新。 
GAIN:回路增益,P参数。 
TI:积分时间常数,即I参数。 
TI:微分时间常数,即D参数。 
TS:采样时间。 

从上面的公式中可以看出,参数P(GAIN)与P、I、D作用都是成正比的,它决定了PID回路的灵敏度,即调节速度的快慢;I参数越大,积分作用越弱,而D参数越大,微分作用越强。不能单靠理论计算来确定PID参数,一的衡量标准就是被控参数(压力)的精度和稳定度,所以在实际调试中,都是参照被控参数的实时曲线,反复观察分析,从而达到较佳的控制效果


202202221739072455394.jpg20220222173907301904.jpg

 近些年来,随着我国的电力、电器行业的迅猛发展,对材料提出了新的技术要求,带动了铜加工行业的加工工艺的进步。我们参与完成了铜加工设备中名为“无氧铜杆连铸机组”的关键设备的电控系统的开发生产。 所谓的无氧铜连铸,是先将铜在400KW的中频加热炉中融化,铜水表面始终覆盖着一层木炭粉,将铜水与氧气隔绝,而后在冷却水套中结晶成铜杆,通过牵引实现连续铸造。这样工艺生产出的铜材导电性能好,线路损耗低,已经受到的认可。 电控系统负责完成铜杆从上引连铸 、牵引、卷绕成盘的流水线的整个生产过程的控制。其中伺服电机带动减速机和及其他机械结构将铜杆向上牵引,实现连续铸造;再由变频器带动机械对铸造好的铜杆实现牵引、卷绕、完成盘状包装。 由于这种冶炼设备都连续24小时不间断运行,一般日产20吨Φ8mm铜杆,产量大,产值高,所以对机组的可靠性要求也很高。设备一旦由于故障而停机,为了避免炉中的铜水冷却凝固后与炉子结为一体,必须要通电保温,光一天的电费损失就高达5000元人民币。由于停机造成大量的废铜也是一大笔损失。同时,该种设备的工作环境却相当恶劣:现场环境温度极高,距离中频加热炉旁2米的环境温度还要达到50℃,会加速电器元件的老化;炭粉、灰尘等导电颗粒可能会影响触摸屏、PLC、伺服驱动器等电器元件的正常工作。这样的环境已经追赶了一般电器产品的环境要求,但产品一旦发生故障又会带来损失和不良的反响,这样的设备对我们及选用的产品来说都是一种考验。 为此,我们经过了广泛的市场调查,进行了实物试验,并进行了方案论证。我们较终采用了抗干扰能力强、性价比较高的日本富士电机公司的触摸屏和可编程控制器来控制交流伺服系统和变频器,组成整个项目的电气控制系统。 系统控制框图: 2# 上引连铸 机构单元 RS485 通讯模块 RS485 通讯模块 RS485 通讯模块 牵引与卷绕机构单元 1# 上引连铸 机构单元 电控系统主要分两大组成部分: 


    1. 铜杆上引部分。

    2. 铜杆牵引卷绕成盘部分。 以下对于各部分的控制要求与电气系统组成予以分别的说明。

    一:铜杆上引部分: 上引系统硬件构成及控制框图: 1# 上引机构组成 2# 上引机构组成 富士可编程控制器 SPB 交流伺服系统 富士触摸屏 UG20 富士可编程控制器 SPB 交流伺服系统 机械部分 富士触摸屏 UG20 机械部分 上引部分由如上控制框图所示的两套完全独立的机构组成,通过触摸屏设置上引的位置控制量、上引的速度,以及作为整个系统故障及运行数据、状态显示。通过可编程控制器完成速度与牵引距离的浮点数算法,然后通过PLS1这条高级脉冲输出指令完成上引的控制过程。上引节距的控制精度为0.01mm, 速度较高可达到3m/min。由于SPB系列的PLC具有100kHz的输出频率,很轻松地控制伺服电机实现高速、高频的运行与停止,保了上引的速度与精度。

     二:铜杆牵引与卷绕部分: 这部分负责将连续铸造出来的12根铜杆,通过12个变频器牵引,再通过另外的12个变频器来进行卷绕控制,实现成品的绕盘,较终形成盘状包装。

    1.铜杆牵引部分: 铜杆牵引部分与的上引部分进行RS485的通讯,可以直接获得连铸的速度,以此作为基准速度,并接收与每一根铜杆相连的浮辊电位器的信号,以此获得由于机械打滑等原因引起的线速度误差。PLC将两部分数据运算后,修正变频器的速度,使牵引系统及时地将连铸出来的铜杆牵引到绕盘部分。 由于SPB系列可编程控制器具有bbbb-DATA的数据传递功能,能够实现每一个处于RS485通讯网络中的可编程控制器之间的数据共享,可以大大减少工程技术人员编制通讯程序的时间,极大地提高了编程效率。即使2套独立的上引机构有不同的连铸速度,也可以通过实时的数据传送到牵引部分的PLC,使之及时调整变频器的牵引速度。 而且,SPB系列可编程控制器的A/D模块的转换精度达到14位(16000/10V)的高分辨率,即使每一根铜杆的线速度有微量的速度变化,都能通过高分辨率的A/D模块敏锐地捕捉到,使PLC能够迅速修正。

    2.铜杆卷绕部分: 铜杆卷绕部分是整个系统的难点:没有任何其他的传感器等电信号,仅仅依靠控制前文提到的卷绕变频器,就要将铜杆绕成一圈圈均匀排列好的由外往里或由里往外的渐开线状的盘型,循环往复后逐渐堆成圆柱型的一大卷。由于铜材本身就有一定的硬度,除了牵引轮、导向轮、转动的绕盘外再也没有其他机械机构,同时客户还提出要求,要通过触摸屏设定绕盘的内、外径尺寸。

    首先,我们运用高等数学的理论建立数学模型,进行精确的数学计算。SPB系列的可编程控制器具有强大的浮点运算功能,使我们顺利地将高等数学的运算公式转换成可编程控制器的运算公式,很好地实现了绕盘的控制。 其次为了节约成本,我们通过利用可编程控制器的48个输出点,加上我们自己编制的**程序实现了精确到0.1Hz的调频,顺利实现了对24个变频器的调速控制,省掉了24路D/A的转换,极大地降低了成本。 我们经过调试和精简PLC指令,顺利地完成了卷绕部分的工作,达到了客户的要求。 总结: 值得一提的是,在项目中,出于成本控制的考虑,往往不配置与触摸屏连接的RS232通讯模块,但是触摸屏又已经占据了编程口,给现场调试中进行在线监控带来了困难。这时,我们把计算机直接接到富士PLC的编程口,调试时取代触摸屏,从电脑把数据输入到PLC的数据寄存器,将PLC内的辅助继电器地址强行置位,而且置位后的数据立即参与运算,实现了在线监控。这种直接输入的功能,令调试变得更直接、更便利。 以前,在上引连铸设备领域,国内只生产机械式的低档设备,产量低,不能满足客户的产量要求;而高档设备都依赖进口,其高昂的价格令国内众多企业驻足不前。我们的电控系统开发成功后,性能不逊于进口设备,使得国产设备的性能明显提升了一个台阶。而且由于我们采用了富士触摸屏、PLC产品,使得操作界面友善、维护便利、价格低廉,使得设备获得了市场的一致认可,短时间内就基本取代了进口设备。 我们的电控系统在2年的实际应用中,经受了恶劣环境的考验,系统运作稳定可靠。生产出的铜杆产品质量优良,即使是由废铜原料生产的铜杆也可以拉丝成直径0.08mm的导线,获得了客户的**。目前,这种设备已经进入批量生产,**、越南、泰国、印尼等东南亚国家。



http://zhangqueena.b2b168.com

产品推荐