• 西门子模块6ES7322-1FF01-0AA0型号规格
  • 西门子模块6ES7322-1FF01-0AA0型号规格
  • 西门子模块6ES7322-1FF01-0AA0型号规格

产品描述

产品规格模块式包装说明全新品牌西门子

西门子模块6ES7322-1FF01-0AA0型号规格


 在城市集中供热系统中,热力站作为热网系统面对系统热用户较后一级调节单元,热力站的控制效果直接决定热用户的采暖效果。太原市热力公司所辖城市热网包含400余座热力站,供热面积覆盖太原市总采暖面积的60%,所有热力站均采用间连型热力换热站。在间连热网热力站中,二次网供回水压力、温度及流量均是影响供热效果的重要因素,而二次网各供参数的调节主要是依靠对二次网循环泵及泵的控制。传统的热力站控制中,循环泵与泵一般都采用工频泵,系统在设计选型时已经决定了系统二次网的主要参数,但是相对的,系统的适应性、扩展性及各参数的精确调整均受到极大限制。太原热力公司自99年起,开始逐步对太原集中供**的各个热力站进行自动控制化改造。对于原有的热力站,统一增加自控仪表、PLC及变频设备;对于新建的热力站,在设计时即在工艺系统基础上引入自控设备。自控系统辅助将热力站的控制精确化,结合热网中控室全网平衡系统及通讯网络系统,进行全网均匀调节,达到较好的控制效果。

    本文着重介绍自控系统及变频器在热力站控制中的应用。间连型热力站自控系统按设备类型分,可分为:温度、压力变送器,流量计,电动调节阀,循环泵及泵;按控制回路分,则可分为:一次网流量控制回路、二次网循环控制回路、二次网定压回路。在热力站自控系统中,一次网流量控制回路主要通过调节一次回水调节阀来实现。二次网的调节回路则是通过调节二次网循环泵及泵转速来实现。一次网的控制指令主要由热网调度中心根据全网平衡算法下发,而二次网循环泵及泵变频器转速则由站内PLC系统依据各热力站所带热网的实际情况计算得出。热力站自控系统结构如下图。

    三、系统控制思想在集中供热工程中由于各用户的建筑面积、暖气片能及房屋保温质量各不相同,很难确定一组典型的室内温度作为直接被控量,而供、回水的平均温度从整体上反映了各用户暖气片的平均温度,因此一般的供热系统都是根据室外环境温度及不同的供热时段来控制供、回水平均温度的方法来间接控制用户室温。

    在太原各热网控制中,由于在进行热力站自控改造的同时,对热网调度系统也进行了调整。目前太原各个热力分公司热网调度中心都加设了全网平衡系统,调度中心通过与个热力站进行通讯,获取热网数据,并根据室外温度情况对全网热力站的供热效果进行均匀调整。

    各热力站从控制中心获取对应的二次网供回水平均温度,站内系统将独立控制回路分为二次网供回水平均温度控制回路和一次网流量控制回路,根据平均温度的偏差确定一次网流量的设定值,然后调节阀门开度使流量达到设定值。系统根据二次网供、回水平均温度的温差,通过变频器自动调节循环泵的转速,实现对系统总流量和温度的调节。使循环水泵按照实际负荷输出功率,减少不必要的电能损失,实现小流量大温差的运行模式。通过此举,可以及时地把流量、扬程调整到需要的数值上,多余的电能消耗,从而达到良好的节能效果。通常热力系统会设计两台变频泵,这不仅是为了系统备用,也是为了防止系统超调。如果负荷不够,则泵的转速加大,达到100%时还不满足要求,则启动第二台泵。同时系统还可以根据运行时间自动切换各循环泵,也提供低水压保护和连锁功能。供、回水压力是热网安全运行的重要参数。供水压力过高可能造成热水管道及用户暖气片的破裂;供、回水压力过低,使得部分热用户无法的到足够热量。恒压控制的较佳方案是对泵进行变频调速控制,

但考虑此处对压力的稳定性要求并不高,只要压力不超出某一范围即可,所以也可以采用开关控制方案。

    四、热力站控制系统的实现

    热力站的一次网回路控制,主要是热负荷控制。通过控制调节一次网回路上的电动调节阀,来调节流过热力站的一次热水的流量。在全网控制系统中,全网控制中心根据目前室外温度情况,参考热源的运行情况及各热力站反馈的二次网运行数据,计算出各热力站一次网控制阀门的开度指令或二次网目标控制温度。热力站系统根据全网控制中心下发的指令,调节一次网流量调节阀,从而实现全热网的热资源均匀分配。一次网回路控制中主要的参考对象为热力站一、二次网供回水温度;一网控制的对象为一次网调节阀;控制目的为提供热力站必须的供暖热量。

    2、二次网循环泵控制:热力站系统二次网循环泵是通过变频器来调速。传统热力站系统循环泵通常采用工频泵,循环泵选定后,热力站二次网的流量无法进行调整,从而造成热力站系统无法根据室外温度及实际供热需求来调整,造成热力及电力资源的浪费。而且大,热力系统自控改造中,对15KW以上的循环泵普遍使用变频控制。一般的循环泵均采用压差控制方式,即循环泵的转速受二次网供回水压差调整。压差控制的方式可以通过调节循环泵转速,调节二网流量以满足供热需求,从而减少浪费。在热力站循环泵控制中,我们采用供回水温差结合供回水压差控制的方式。热力站控制系统根据各系统的实际情况,设定一个供回水压差目标值。设定此供回水压差值以满足二次管网的供暖水循环。在此基础上,热力站PLC系统通过测量二次网供回水温差来对循环泵进行修正。当二网供回水温差偏大时,则需提高循环泵转速,加大二网流量,提高二网回水温度,改善供热效果;当二网供回水温差过小时,需适当降低循环泵转速,减小二次网的流量。这种调整可以起到节约电能及热能的效果,在大型热网中,这种节能手段就能取得可观的效果。二次网的控制采用的是定压控制,传统热力站中往往采用压力表电节点控制。随着城市集中供热的发展,系统的热负荷越来越大,热力站系统所带的供暖面积都比较大,并且供热网条件不一,二网系统的水力损失较大。严重的水力损失使得二次网的系统压力加大,频繁。而传统的工频泵的频繁起停,容易造成二次管网压力的波动。在热负荷较大的系统中,我们采用泵变频控制,对系统进行精确的微调。当系统失水时,二网压力下降,系统会通过变频器控制泵以一定的转速进行,泵的转速根据当前压力与目标压力的差值均匀调整,从而避免泵在启动和停止时对二次网系统的冲击。

    在现场人机界面上,可以通过操作面板任意调节系统所需的各种运行状态,例如:一、二次网供回水温度及温差,变频器较大较小运行频率等,并可随时查阅以往运行记录。根据用户要求可将当前参数以画面、曲线、报表的形式在屏幕上显示。

    五、热力站自控系统的优点在热力站中使用变频器及可编程控制器,充分发挥变频器的调速和节能的优点及可编程控制器配置灵活、控制可靠、编程方便的优点,使整个系统的稳定性有了可靠**。通过热力站自动控制系统的投运,过去主要依靠人工调节的控制手段得到了彻底改善,热网的运行得到合理控制,失调现象得到了有效地解决,了热网中各站冷热不均的现象。按需供热、节能降耗,改变了不合理的小温差大流量运行方式,既保证了远端客户的供热需要又避免了近端用户的过热现象直接提高了热网的供热效果。

    剌慧东男现供职于山西省太原市热力公司材料设备处,分管技术工作,兼任山西省城镇供热协会特聘电气*

可编程控制器简称——PLC是以微处理器为基础,综合了计算机技术、自动控制技术和通讯技术发展而来的一种新型工业控制装置。它具有结构简单、编程方便、可靠性高等优点,已广泛用于工业过程和位置的自动控制中。据统计,可编程控制器是工业自动化装置中应用较多的一种设备。*认为,可编程控制器将成为今后工业控制的主要手段和重要的基础设备之一,PLC、机器人、/CAM将成为工业生产的三大支柱。

PLC是在继电器控制逻辑基础上,与3C技术(Computer,Control,Communication)相结合,不断发展完善的。目前已从小规模单机顺序控制,发展到包括过程控制、位置控制等场合的所有控制领域。

PLC早期主要应用于工业控制,但随着技术的发展,其应用领域正在不断扩大下面就其在公路交通领域的应用做一简单介绍:

PLC型交通灯控制器

将PLC用于对交通信号灯的控制,主要是考虑其具有对使用环境适应性强的特性,同时其内部定时器资源十分丰富,可对目前普遍使用的“渐进式”信号灯进行精确控制,特别对多岔路口的控制可方便的实现。目前大多品牌的PLC内部均配有实时时钟,通过编程控制可对信号灯实施全天候无人化管理。由于PLC本身具有通讯联网功能,将同一条道路上的信号灯组成一局域网进行统一调度管理,可缩短车辆通行等候时间,实现科学化管理。

公路收费系统中的应用—PLC型车道控制机

每个公路收费站,其车道机电设备配置、型号各有不同,因此用于控制这些设备的主机—车道控制器的结构也不尽相同,通用性、可维护性较差,不利于使用及维修,以PLC作为主机开发出的新型车道控制机,不仅可使其通用性、维 护性得到较大程度上的改善,还可以在使用寿命、稳定性机控制功能方面获得极大提高,具体叙述如下:

1. 对棚灯及雾灯的控制

如前所述,由于PLC本身具有时钟功能,通过软件编程,可对棚灯、雾灯进行无人化、智能控制。

2. 对费额显示器的控制

PLC本身具有上位机接口,可接收上位收费计算机下传的数据,而PLC具有各种译码指令,可将接受的数据转换成七段显示码,输出给LED数码管进行数据显示。

3. 对挡车器的控制

将PLC用于对挡车器进行控制具有以下几方面的优势 。

(1)使用寿命长:从目前反馈情况看,目前挡车器控制电路的使用寿命大部分均不足五年这与其电路设计、元器件选型、工作环境及控制方式等因素有关,是其本身无法克服的固有缺点。PLC作为工业控制单元,应用于各种控制环境,内部电路、机械结构设计极为精良,所用器件均选用标准工业级产品,其使用寿命一般可保证在十年以上。

(2)性能稳定可靠,抗干扰性好:PLC应用于各种工业控制现场,其硬件及软件设计均考虑到各种生产环境,其电压适用范围很宽,具有极强的抗电磁干扰、抗震动、抗高温、高湿等特性,性能极为稳定、可靠。

(3)功能强大,实现灵活,可扩展性好:PLC型挡车器作为老型号挡车器的升级产品,其功能得到极大增强,目前可实现的功能有:自动抬杆、自动落杆、防砸车、防砸人、各种情况的自动报警、设备保护及故障识别等。以上功能可实现各种组合,并可根据实际需要改变上述功能的控制过程及方式,并可根据使用者要求在不增加或少增加硬件的基础上开发新的控制功能。

(4)良好的性价比:虽然PLC型挡车器的性能及功能较现有挡车器有极大提高,但其成本的增加与其性能的提高并非成线性关系,所以无论将其作为整机用于新品开发,还是作为老设备改进均有其良好的性价比。

PLC作为一门控制技术在我国已有近二十年的应用,并已从工业控制逐渐向其他行业扩展,相信随着其本身性能的不断提高,其应用领域将不断拓宽,了解及掌握这一控制技术,将使我国的自动化控制技术得到更广泛的应用与发展。

202207281244519172844.jpg202202231632210850864.jpg202202231632201798164.jpg


控制方案
某重型机械制造大件分厂,承担着所有大件设备装配、、对接等任务,对起重机性能要求很高,所用一台QD250/50t桥式起重机采用了siemens S7-400 PLC、ABB变频器、触摸屏等高性能配置,应用了先进的Profibus现场总线技术、带编码器反馈的直接转距控制方式、及先进的人机界面系统。
      桥式起重机分为主钩、副钩、大车、小车等四部分.因主起升机构在起重机应用上较为典型,控制也较为复杂,故本章以主起升为例详细介绍其控制方式。                                                                    
1、PLC
整个系统以S7-400 PLC作为电控核心,主要有电源模块、CPU、输入输出模块及接口模块等组成。输入模块采集由限位开关、热敏电阻、变频器故障反馈等设备的信号状态;接收主令控制器、按钮开关发出的控制指令,集中在CPU中进行运算,并将程序运算通过输出模块和Profibus现场总线传送给接触器和变频器等执行设备,从而驱动电动机、液压抱闸、冷却风机等完成各种生产任务。
2、Profibus串行通讯现场总线系统
Profibus是一种开放式串行通讯标准,该标准可以实现数据在各类自动化元件之间互相交换。在本系统中以S7-400作为主站,以各机构变频器作为从站,通过DP接口模块和RS485屏蔽双绞线进行数据快速实时交换。
设置变频器通讯参数:
98.02=fieldbus   通迅模块
51.01= Profibus-DP   选择现场总线类型
51.02=3   设置主升变频器站地址
51.03=1500   选择通迅传输速率为1.5Mbit/s
51.04=PPO4 选择类型4(6个过程数据为一个标准块)
作为主站的PLC*处理器从从站读取各种输入状态信息,即从变频器读出主升状态字和实际值,包括变频器准备好、上电应答、运行、转矩验OK、变频器故障、电动机实际转速等信息;并将各种输出信息写入从站,即将控制字和速度给定写入变频器。包括通讯位、来自现场总线的PLC系统的Drive on、来自上位系统的启动信号、故障复位信号及实际频率给定等。使复杂的信号转换、监控、反馈过程全部通过Profibus链的、和CPU的快速集中处理轻松实现。
3、         先进的人机界面系统
TP270触摸屏和PLC之间也采用Profibus总线进行与交换,实时地显示和监控各机构的运行状态及电压、电流、转矩、速度等运行参数,并能利用自身故障实时诊断系统对故障现象进行判断,记录故障时的各种参数,这样,操作人员和检修人员就可以全面及时地了解系统的状态,并可按提示的故障信息去检查和维修,达到准确、快除故障的效果,真正实现了人机智能化。
4、         变频调速系统
1)          起升工况及要求
起升机构要求较大的调速比和较硬的机械特性,以适应重物的精确吊装要求;要求有大的起动转矩,优异的动态转矩响应能力,以适应负载突变,保证重载二次起升的能力;必须解决好再生制动状态的能量回馈与处理,以缩短减速停车时间;必须解决好溜钩问题。
2)         变频功能应用
根据起升机构特性和技术要求,变频器采用带测速反馈接口的800系列变频器,配合ACC 7.2提升软件,形成闭环直接转矩控制,通过预励磁功能和启动转矩设定,使电机启动瞬间力矩较高可达300%,实现了优异的启动特性.内置制动斩波器,外接制动电阻,使制动过程中的产生的再生能量通过制动电阻得到释放,达到快速制动的目的。使用机械制动控制功能,使电机转矩释放和制动器紧密配合,更好地提高了设备的安全性,承受频繁起动冲击的能力及可靠性也大为增加。
3) 参数设置
99. 1=ENGLISH   选择语言.
99. 2=CRANE     选择起升**宏.
99. 3=YES        复位为工厂设置.
99. 4=DTC        选择直接转矩控制.
99. 5=380V       设定电机额定电压为380V.
99. 6=286A       设定电机额定电流为286A.
99. 7=50HZ       设定电机额定频率为50HZ.
99. 8=722rpm     设定电机额定转速为722转/分.
99. 9=150KW      设定电机额定功率为150KW.
99.10=STANDARD 选择标准旋转型电机数据辩识.
10.1=DI1           设置数字输入1为制动应答信号.
14.1=BRAKE LIFT    设置继电器输出1为机械制动控制.
14.2=WATCHDOG-N 设置继电器输出2为看门狗,当发生到通讯故障、制动斩波器故障、CPU阻塞等故障时切断制动器输出并急停.
14.3=FAULT         设置继电器输出3为故障输出,当发生过电流、过电压、过力矩、过载、过速度等故障时保护装置动作.
20.1= -722rpm     设置较小转速为-722转.
20.2=722rpm      设置较大转速为722转.
20.6=OFF         关闭直流过电压控制器.
21.1=CNST DC MAGN 设置启动特性为恒定励磁模式.
21.2=600ms   设置预励磁时间为600ms.
27.1=ON     制动斩波器的控制.
27.2=ON      制动电阻器的过载保护功能.
30.4= FAULT 选择电机过温时的保护类型为故障跳闸停车.
30.10=FAULT 选择电机缺相时的保护类型为故障跳闸停车.
30.11= FAULT 选择电机发生接地故障时保护类型为故障跳闸停车.
30.12= FAULT 选择现场总线与变频器的通讯异常时的保护类型为故障跳闸停车.
50.1=1024      设定编码器每转的脉冲数为1024.
50.2=A_-_B_-_ 选择对信号A、 B的所有边沿计数并换算成速度.
50.3=FAULT    设定脉冲编码器与编码器接口模块之间,或编码器接口模块与变频器控制板之间检测到通讯故障时的保护类型为故障跳闸停车.
50.5=TRUE    选择将编码器模块的实际速度反馈用于速度和转矩控制.
61.1=110%      设定当电机速度值超过额定速度的110%时,传动将跳闸并显示过速度故障.
62.1=TRUE     选择转矩监视功能.
64.1=FALSE    选择控制方式为现场总线.
65.1= FALSE   选择电机停止后只在65.2的时间内保持励磁.
65.2=5s         选择电机停止后电机励磁电流保持on的时间,在此时间内电动机保持励磁并随时准备快速重起.
66.1=TRUE    选择转矩验功能有效.
66.3=**     选择转矩验有效值.在启动时,只有当电机力矩达到该值并通过验时才会发出抱闸打开指令.
67.1=2S       设定制动施加时间为2S,当停止时电机速度下降到零速值,抱闸开始闭合,在此时间内电机保持力矩,直至抱闸闭合完闭.防止重物下滑溜钩.
67.2=2%        设定相对零速值为2%,在当实际速度达到该值以下时,制动器开始闭合.
67.09=P67.10    选择启动转矩调用P67.10的值.
67.10=**     设定启动时转矩给定值为**.
69.2=3S   设定上升方向转速从0到**的加速时间为3S.
69.3=3S   设定下降方向转速从0到-**的加速时间为3S.
69.4=2S   设定上升方向转速从**到0的减速时间为2S.
69.5=2S   设定下降方向转速从-**到0的减速时间为2S.
98.1=RTAC-SLOT1   与脉冲编码器模块的通讯.
4)主要功能介绍:
转距验 
转矩验用于确认在松开抱闸和开始提升运行之前传动能够产生转矩,抱闸没有打滑.它是将机械抱闸被施加时给一个正的转矩给定(P67.10的值)来完成的.如果转矩验成功,则表示转矩达到了正确的等级,才能执行启动序列中的下一步骤.当变频器启动信号有效时,转矩验程序就开始了,完成之后,转矩验OK被置1,如果在转矩验期间到了任何故障,则转矩验失败,且传动跳闸停车,并在监控系统中给出故障指示,大大增加了起重机的安全性。
机械制动控制   
变频器内置了制动逻辑控制器,用来控制抱闸接触器的动作.当接收到启动命令时,变频器首先对电动机进行预励磁,然后释放速度和转矩控制器,如果转矩验OK通过,制动器将抬起,电动机将按照正常的加速时间运行.如果在规定的时间内没有接收到制动应答信号,传动将故障跳闸并指示制动器故障.启动命令撤去之后,传动将按减速时间减速到相对零速,当接到零速信号反馈后,制动抬起命令被关闭,在制动施加时间(即P67.1的值)内传动将保持励磁和转矩输出,直至制动器闭合完毕,有效地预防了溜钩事故的发生。
再生能量的处理  
重载下降时电动机处于再生制动状态,对于再生电能,必须能够妥善处理,以保能使减速停车时间尽量缩短。通过设置20.6=OFF关闭直流过电压控制器、27.1=ON 制动斩波器的控制,设置P69.04、P69.05选择合理的减速时间,当重物下降减速时,所产生的再生电能将通过和逆变管所并联的二极管全波整流后反馈到中间直流电路,这一过程将产生泵升电压,当此电压超过门限值,制动斩波器就会被,把多余的电能通过制动电阻快速得到释放,保了在短时间内快速减速或停车。



http://zhangqueena.b2b168.com

产品推荐