• 6ES7318-3EL01-0AB0安装调试
  • 6ES7318-3EL01-0AB0安装调试
  • 6ES7318-3EL01-0AB0安装调试

产品描述

产品规格模块式包装说明全新品牌西门子

6ES7318-3EL01-0AB0安装调试


作为一种开环控制的系统,和现代数字控制技术有着本质的联系。在目前国内的数字控制系统中,步进电机的应用十分广泛。随着全数字式交流伺服系统的出现,交流也越来越多地应用于数字控制系统中。为了适应数字控制的发展趋势,运动控制系统中大多采用步进电机或全数字式交流伺服电机作为执行。虽然两者在控制方式上相似(脉冲串和方向信号),但在使用性能和应用场合上存在着较大的差异。现就二者的使用性能作一比较。

一、控制精度不同

两相混合式步进电机步距角一般为 1.8°、0.9°,五相混合式步进电机步距角一般为0.72 °、0.36°。也有一些高性能的步进电机通过细分后步距角更小。如山洋公司(sanyo denki)生产的二相混合式步进电机其步距角可通过拨码开关设置为1.8°、0.9°、0.72°、0.36°、0.18°、0.09°、0.072°、0.036°,兼容了两相和五相混合式步进电机的步距角。

交流伺服电机的控制精度由电机轴后端的旋转编码器保。以山洋全数字式交流伺服电机为例,对于带标准2000线编码器的电机而言,由于驱动器内部采用了四倍频技术,其脉冲当量为360°/8000=0.045°。对于带17位编码器的电机而言,驱动器每接收131072个脉冲电机转一圈,即其脉冲当量为360°/131072=0.0027466°,是步距角为1.8°的步进电机的脉冲当量的1/655。

二、低频特性不同

步进电机在低速时易出现低频振动现象。振动频率与负载情况和驱动器性能有关,一般认为振动频率为电机空载起跳频率的一半。这种由步进电机的工作原理所决定的低频振动现象对于机器的正常运转非常不利。当步进电机工作在低速时,一般应采用阻尼技术来克服低频振动现象,比如在电机上加阻尼器,或驱动器上采用细分技术等。 (www.论坛版权所有)

交流伺服电机运转非常平稳,即使在低速时也不会出现振动现象。交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能(fft),可出机械的共振点,便于系统调整。

三、矩频特性不同

步进电机的输出力矩随转速升高而下降,且在较高转速时会急剧下降,所以其较高工作转速一般在300~600rpm。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000rpm或3000rpm)以内,都能输出额定转矩,在额定转速以上为恒功率输出。

四、过载能力不同

步进电机一般不具有过载能力。交流伺服电机具有较强的过载能力。以山洋交流伺服系统为例,它具有速度过载和转矩过载能力。其较大转矩为额定转矩的二到三倍,可用于克服惯性负载在启动瞬间的惯性力矩。步进电机因为没有这种过载能力,在选型时为了克服这种惯性力矩,往往需要选取较大转矩的电机,而机器在正常工作期间又不需要那么大的转矩,便出现了力矩浪费的现象

是产品中关键部件之一,通常被用作定位控制和定速控制。步进电机惯量低、定位精度高、无累积误差、控制简单等特点。广泛应用于机电一体化产品中,如:、包装机械、计算机外围设备、复印机、传真机等。

选择步进电机时,首先要保步进电机的输出功率大于负载所需的功率。而在选用功率步进电机时,首先要计算机械系统的负载转矩,电机的矩频特性能满足机械负载并有一定的余量保其运行可靠。在实际工作过程中,各种频率下的负载力矩必须在矩频特性曲线的范围内。一般地说较大静力矩mjmax大的电机,负载力矩大。

选择步进电机时,应使步距角和机械系统匹配,这样可以得到机床所需的脉冲当量。在机械传动过程中为了使得有更小的脉冲当量,一是可以改变丝杆的导程,二是可以通过步进电机的细分驱动来完成。但细分只能改变其分辨率,不改变其精度。精度是由电机的固有特性所决定。

选择功率步进电机时,应当估算机械负载的负载惯量和机床要求的启动频率,使之与步进电机的惯性频率特性相匹配还有一定的余量,使之较高速连续工作频率能满足机床快速移动的需要。

选择步进电机需要进行以下计算:

(1)计算齿轮的减速比

根据所要求脉冲当量,齿轮减速比i计算如下:

i=(φ.s)/(360.δ) (1-1) 式中φ ---步进电机的步距角(o/脉冲)

s ---丝杆螺距(mm)

δ---(mm/脉冲)

(2)计算工作台,丝杆以及齿轮折算至电机轴上的惯量jt。

jt=j1+(1/i2)[(j2+js)+w/g(s/2π)2] (1-2)

式中jt ---折算至电机轴上的惯量(kg.cm.s2)

j1、j2 ---齿轮惯量(kg.cm.s2)

js ----丝杆惯量(kg.cm.s2) w---工作台重量(n)

s ---丝杆螺距(cm)

(3)计算电机输出的总力矩m

m=ma+mf+mt (1-3)

ma=(jm+jt).n/t×1.02×10ˉ2 (1-4)

式中ma ---电机启动加速力矩(n.m)

jm、jt---电机自身惯量与负载惯量(kg.cm.s2)

n---电机所需达到的转速(r/min)

t---电机升速时间(s)

mf=(u.w.s)/(2πηi)×10ˉ2 (1-5)

mf---导轨摩擦折算至电机的转矩(n.m)

u---摩擦系数

η---传递效率

mt=(pt.s)/(2πηi)×10ˉ2 (1-6)

mt---切削力折算至电机力矩(n.m)

pt---较大切削力(n)

(4)负载起动频率估算。数控系统控制电机的启动频率与负载转矩和惯量有很大关系,其估算公式为

fq=fq0[(1-(mf+mt))/ml)÷(1+jt/jm)] 1/2 (1-7)

式中fq---带载起动频率(hz)

fq0---空载起动频率

ml---起动频率下由矩频特性决定的电机输出力矩(n.m)

若负载参数无法精确确定,则可按fq=1/2fq0进行估算.

(5)运行的较高频率与升速时间的计算。由于电机的输出力矩随着频率的升高而下降,因此在较高频率 时,由矩频特性的输出力矩应能驱动负载,并留有足够的余量。

(6)负载力矩和较大静力矩mmax。负载力矩可按式(1-5)和式(1-6)计算,电机在较大进给速度时,由矩频特性决定的电机输出力矩要大于mf与mt之和,并留有余量。一般来说,mf与mt之和应小于(0.2 ~0.4)mmax.

一般伺服都有三种控制方式:速度控制方式,转矩控制方式,位置控制方式 。

速度控制和转矩控制都是用模拟量来控制的。位置控制是通过发脉冲来控制的。具体采用什么控制方式要根据客户的要求,满足何种运动功能来选择。

如果您对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。

如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者,基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。

就伺服驱动器的响应速度来看,转矩模式运算量较小,驱动器对控制信号的响应较快;位置模式运算量较大,驱动器对控制信号的响应较慢。

对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端**控制器才能这么干,而且,这时完全不需要使用。

换一种说法是:

1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10v对应5nm的话,当外部模拟量设定为5v时电机轴输出为2.5nm:如果电机轴负载低于2.5nm时电机正转,外部负载等于2.5nm时电机不转,大于2.5nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。

2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。应用领域如、印刷机械等等。

3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环pid控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。位置模式也支持直接负载外环位置信号,此时的电机轴端的编码器只电机转速,位置信号就由直接的较终负载端的装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。


202202221739072455394.jpg20220222173907301904.jpg202202221739073176584.jpg



用于国内变压器的高压绕组一般联成y接法,中压绕组与低压绕组的接法要视系统情况而决定。所谓系统情况就是指高压输电系统的电压相量与中压或低压输电系统的电压相量间关系。如低压系配电系统,则可根据标准规定决定。

高压绕组常联成y接法是由于相电压可等于线电压的57.7%,每匝电压可低些。

1).国内的500、330、220与110kv的输电系统的电压相量都是同相位的,所以,对下列电压比的三相三绕组或三相自耦变压器,高压与中压绕组都要用星形接法。当三相三铁心柱铁心结构时,低压绕组也可采用星形接法或角形接法,它决定于低压输电系统的电压相量是与中压及高压输电系统电压相量为同相位或滞后30°角。

500/220/lvkv─yn,yn0,yn0或yn,yn0,d11

220/110/lvkv─yn,yn0,yn0或yn,yn0,d11

330/220/lvkv─yn,yn0,yn0或yn,yn0,d11

330/110/lvkv─yn,yn0,yn0或yn,yn0,d11

2).国内60与35kv的输电系统电压有二种不同相位角。

如220/60kv变压器采用ynd11接法,与220/69/10kv变压器用yn,yn0,d11接法,这二个60kv输电系统相差30°电气角。

当220/110/35kv变压器采用yn,yn0,d11接法,110/35/10kv变压器采用yn,yn0,d11接法,以上两个35kv输电系统电压相量也差30°电气角。

所以,决定60与35kv级绕组的接法时要慎重,接法必须符合输电系统电压相量的要求。根据电压相量的相对关系决定60与35kv级绕组的接法。否则,即使容量对,电压比也对,变压器也无法使用,接法不对,变压器无法与输电系统并网。

3).国内10、6、3与0.4kv输电与配电系统相量也有两种相位。在上海地区,有一种10kv与110kv输电系统电压相量差60°电气角,此时可采用110/35/10kv电压比与yn,yn0,y10接法的三相三绕组变压器,但限用三相三铁心柱式铁心。

4).但要注意:单相变压器在联成三相组接法时,不能采用yny0接法的三相组。三相壳式变压器也不能采用yny0接法。

三相五柱式铁心变压器必须采用yn,yn0,yn0接法时,在变压器内要有接成角形接法的第四绕组,它的出头不引出(结构上要做电气试验时引出的出头不在此例)。

5).不同联结组的变压器并联运行时,一般的规定是联结组别标号必须相同。

6).配电变压器用于多雷地区时,可采用yzn11接法,当采用z接法时,阻抗电压算法与yyn0接法不同,同时z接法绕组的耗铜量要多些。yzn11接法配电变压器的防雷性能较好。

7).技术'>;三相变压器采用四个卷铁心框时也不能采用yny0接法。

8).以上都是用于国内变压器的接法,如出口时应按要求供应合适的接法与联结组标号。

9).一般在高压绕组内都有分接头与分接开关相联。因此,选择分接开关时(包括有载调压分接开关与无励磁调压分接开关),必须注意变压器接法与分接开关接法相配合(包括接法、试验电压、额定电流、每级电压、调压范围等)。对yn接法的有载调压变压器所用有载调压分接开关而言,还要注意中点必须能引出.

1,为什么会发热?

任何电机都会发热,只是发热程度不同罢了。对于各种步进电机而言,内部都是由铁芯和绕组线圈组成的。绕组有电阻,通电会产生损耗,损耗大小与电阻和电流的平方成正比,这就是我们常说的铜损,如果电流不是标准的直流或正弦波,还会产生谐波损耗;铁心有磁滞涡流效应,在交变磁场中也会产生损耗,其大小与材料,电流,频率,电压有关,这叫铁损。铜损和铁损都会以发热的形式表现出来,从而影响电机的效率。步进电机一般追求定位精度和力矩输出,效率比较低,电流一般比较大,且谐波成分高,电流交变的频率也随转速而变化,因而步进电机普遍存在发热情况,且情况比一般交流电机严重。

2,步进电机发热的合理范围?。

电机发热允许到什么程度,主要取决于电机内部绝缘等级。内部绝缘性能在高温下(130度以上)才会被破坏。所以只要内部不超过130度,电机便不会损坏,而这时表面温度会在90度以下。所以,步进电机表面温度在70-80度都是正常的。简单的温度测量方法有用点温计的,也可以粗略判断:用手可以触摸1-2秒以上,不超过60度;用手只能碰一下,大约在70-80度;滴几滴水迅速气化,则90度以上了。

3,步进电机工作方式不同,发热也不同。

遇采用恒流驱动技术时,步进电机在静态和低速下,电流会维持相对恒定,以保持恒力矩输出。速度高到一定程度,电机内部反电势升高,电流将逐步下降,力矩也会下降。因此,因铜损带来的发热情况就与速度相关了。静态和低速时一般发热高,高速时发热低。但是铁损(虽然占的比例较小)变化的情况却不尽然,而电机整个的发热是二者之和,所以上述只是一般情况。

4,步进电机发热会影响步进电机的工作寿命吗?

电机发热虽然一般不会影响电机的寿命,对大多数客户来说没必要理会。但是,严重的发热会带来一些负面影响。如电机内部各部分热膨胀系数不同导致结构应力的变化和内部气隙的微小变化,会影响电机的动态响应,高速会容易失步。又如有些场合不允许电机的过度发热,如医疗器械和高精度的测试设备等。因此对电机的发热应当进行必要的控制。我们的步进电机用在钢铁机器人上,环境温度100多度,至今工作正常。

5,步进电机发热问题的解决方案?

如果步进电机驱动器有自动半流模式,尽量让其工作在半流状态,因为此时步进电机全流工作发热较大 。

如果负载力矩范围允许的情况下,可以把电机额定电流降下来,比如5a电机,让其工作在4a状态下;

选择低电阻,低电流的步进电机,减少铜损和铁损。

加装风机,强制散热。




http://zhangqueena.b2b168.com

产品推荐