7
西门子6ES7277-0AA22-0XA0售后
按结构分可将PLC分为整体式PLC、模块式PLC、叠装式PLC三类。
a.整体式PLC
它是将PLC各组成部分集装在一个机壳内,输入、输出接线端子及电源进线分别在机箱的上、下两侧,并有相应的发光二管显示输入/输出状态。面板上留有编程器的插座、EPROM存储器插座、扩展单元的接口插座等。编程器和主机是分离的,程序编写完毕后即可拔下编程器。
具有这种结构的可编程控制器结构紧凑、体积小、价格低。小型PLC一般采用整体式结构。
b.模块式PLC
输入/输出点数较多的大、中型和部分小型PLC采用模块式结构。
模块式PLC采用积木搭接的方式组成系统,便于扩展,其CPU、输入、输出、电源等都是立的模块,有的PLC的电源包含在CPU模块之中。PLC由框架和各模块组成,各模块插在相应插槽上,通过总线连接。PLC厂家备有不同槽数的框架供用户选用。用户可以选用不同档次的CPU模块、品种繁多的I/O模块和其他特殊模块,硬件配置灵活,维修时换模块也很方便。采用这种结构形式的有SIEMENS的S5系列、S7-300、400系列,OMRON的C500、C1000H及C2000H等以及小型CQM系列。
上述两种结构各有特色,整体式PLC结构紧凑、安装方便、体积小,易于与被控设备组成一体,但有时系统所配置的输入输出点不能被充分利用,且不同PLC的尺寸大小不一致,不易安装整齐;模块式PLC点数配置灵活,但是尺寸较大,很难与小型设备连成一体。为此开发了叠装式PLC,它吸收了整体式和模块式PLC的优点,其基本单元、扩展单元等高等宽,它们不用基板,仅用扁平电缆连接,紧密拼装后组成一个整齐的体积小巧的长方体,而且输入、输出点数的配置也相当灵活。带扩展功能的PLC,扩展后的结构即为叠装式PLC。
我们有些同学接触电气自动化,或者电控有一段时间了,偶尔会因为不知道是干什么的,怎么用出现一些闹剧,我们在这里给大家普及一点知识点:
PLC的输出电路形式一般分为:继电器输出,晶体管输出和晶闸管输出三种。弄清这三种输出形式的区别,对于PLC的硬件设计工作非常有必要。下面以三菱PLC为例,简要介绍一下这三种输出电路形式的区别和注意事项,其它公司的PLC输出电路形式也大同小异。
1、 继电器输出电路 (MR)
优势:继电器输出可通过交流和直流,一般负载AC250V/50V以下,负载电流可达2A,因此,PLC的输出一般不宜直接驱动大电流负载(一般通过一个小负载来驱动大负载,如PLC的输出可以接一个电流比较小的中间继电器,再由中间继电器触点驱动大负载,如接触器线圈等)。
劣势:继电器触点的使用寿命也有限制(一般数十万次左右,根据负载而定,如连接感性负载时的寿命要小于阻性负载)。此外,继电器输出的响应时间也比较慢(10ms)左右,因此,在要求快速响应的场合不适合使用此种类型的电路输出形式。
2、 晶体管输出电路(MT)
优势:晶体管相应速度快,适用于要求快速响应的场合,如高速输出发脉冲;由于晶体管是无机械触点,因此比继电器输出电路形式的寿命长。
劣势:晶体管输出型电路的外接电源只能是直流电源,另外,晶体管输出驱动能力要小于继电器输出,允许负载电压一般为DC5V~30V,允许负载电流为0.2A~0.。这两点的使用晶体管输出电路形式时要注意。
当然在常见输出中不止这些,常见的可控硅放大版等也需要做一些了解,只是其应用逐渐淘汰。
3、NPN和PNP在实际工作理论中,我们需要记住几点
一般PLC采用NPN接法,其公共端为0V ,常见于三菱PLC中;反之PNP接法,公共端接高电平,常见于西门子PLC。
4、当然不仅局限于PLC输入输出端信号,传感器也有不同接法
PNP与NPN型传感器一般有三条引出线,即电源线VCC、GND,OUT信号输出线
1、NPN类
NPN是指当有信号触发时,信号输出线OUT和GND连接,相当于OUT输出低电平。
2、PNP类
PNP是指当有信号触发时,信号输出线OUT和VCC连接,相当于OUT输出高电平的电源线。
由于S7-200的模拟量输出模块都需要占占两个输出通道。即使个模块只有一个输出AQW0,二个模块的输出也应从AQW4开始寻址(AQW2被个模块占用),依此类推。所以自然不会有输出了。


由于西门子S7-200PLC的模拟量输出模块都需要占占两个输出通道。即使个模块只有一个输出AQW0,二个模块的输出也应从AQW4开始寻址(AQW2被个模块占用),依此类推。所以自然不会有输出了。
在S7-200中,单性模拟量输入/输出信号的数值范围是 0 - 32000;双性模拟量信号的数值范围是 -32000-+32000。
格式:
输入:AIW[起始字节地址]——如AIW6
输出:AQW[起始字节地址]——如AQW0
每个模拟量输入模块,按模块的先后顺序和输入通道数目,以固定的递增顺序向后排地址。 例如: AIW0、AIW2、AIW4、AIW6、AIW8等。
对于EM231 RTD(热电阻)两通道输入模块,不再占用空的通道,后面的模拟量输入点是紧接着排地址的。温度模拟量输入模块(EM231 TC、EM231 RTD)也按照上述规律寻址,但是所读取的数据是温度测量值的10倍(摄氏或华氏温度)。如520相当于52.0度。
注意:如果没有把握,可以在线检测到模块的起始地址,方法是:STEP 7-Micro/WIN中的菜单“PLC > Inbbbbation”里在线读到。
关于Siemens S7-200的模拟量模块,有2个大家(尤其是初学者)需要注意的:
1、关于地址,其实S7-200的地址很简单,跟相对位置有关,每个模拟量输入模块,按模块的先后顺序地址为固定的,顺序向后排。可以通过编程软件inbbbbation菜单来在线查看;说需要注意的就是地址都是偶数,比如AIW0 AIW2 ,没有AIW1之类的,输出也需要注意,比如EM235虽然只有1个通道输出,但是占用2个地址,下一个模块隔个输出,比如有CPU旁扩展2个相连的EM235,那么模拟量输出分别为AQW0和AQW4;
2、关于拨码开关,不同的拨码开关对应不同的测量方法,物理量的性质等等,这里要注意的是,拨码开关断电后重新上电才有效。而且需要注意的是拨码开关同时对所有通道有效
在发达的工业国家,PLC已经广泛地应用在所有的工业部门,随着其性能价格比的不断提高,应用范围不断扩大,主要有以下几个方面:
1.开关量逻辑控制
PLC具有“与”、“或”、“非”等逻辑指令,可以实现触点和电路的串、并联,代替继电器进行组合逻辑控制、定时控制与顺序逻辑控制。开关量逻辑控制可以用于单台设备,也可以用于自动生产线,其应用领域已遍及各行各业,甚至深入到家庭。
2.运动控制
PLC使用的指令或运动控制模块,对直线运动或圆周运动的位置、速度和加速度进行控制,可实现单轴、双轴、3轴和多轴位置控制,使运动控制与顺序控制功能地结合在一起。PLC的运动控制功能广泛地用于各种机械,如金属切削机床、金属成形机械、装配机械、机器人、电梯等场合。
3.闭环过程控制
过程控制是指对温度、压力、流量等连续变化的模拟量的闭环控制。PLC通过模拟量I/O模块,实现模拟量(Analog)和数字量(Digital)之间的A/D转换与D/A转换,并对模拟量实行闭环PID(比例-积分-微分)控制。现代的大中型PLC一般都有PID闭环控制功能,这一功能可以用PID子程序或的PID模块来实现。其PID闭环控制功能已经广泛地应用于塑料挤压成形机、加热炉、热处理炉、锅炉等设备,以及轻工、化工、机械、冶金、电力、建材等行业。
4.数据处理
现代的PLC具有数学运算(包括四则运算、矩阵运算、函数运算、字逻辑运算、求反、循环、移位和浮点数运算等)、数据传送、转换、排序和查表、位操作等功能,可以完成数据的采集、分析和处理。这些数据可以与储存在存储器中的参考值比较,也可以用通信功能传送到别的智能装置,或者将它们打印制表。
5.通信联网
PLC的通信包括主机与远程I/O之间的通信、多台PLC之间的通信、PLC与其他智能控制设备(如计算机、变频器、数控装置)之间的通信。PLC与其他智能控制设备一起,可以组成“集中管理、分散控制”的分布式控制系统。
指出,并不是所有的PLC都有上述全部功能,有些小型PLC只有上述的部分功能,但是价格较低
可编程控制器是60年代末在美国出现,当时叫可编程逻辑控制器PLC(Programmable Logic Controller),目的是用来取代继电器,以执行逻辑判断、计时、计数等顺序控制功能。PLC的基本设计思想是把计算机功能完善、灵活、通用等优点和继电器控制系统的简单易懂、操作方便、价格等优点结合起来,控制器的硬件是标准的、通用的。根据实际应用对象,将控制内容编成软件写入控制器的用户程序存储器内。控制器和被控对象连接方便。
随着半导体技术,尤其是微处理器和微型计算机技术的发展,到70年代中期以后,PLC已广泛地使用微处理器作为处理器,输入输出模块和外围电路也都采用了中、大规模甚至大规模的集成电路,这时的PLC已不再是逻辑判断功能,还同时具有数据处理、PID调节和数据通信功能。
可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计。它采用了可编程序的存储器,用来在其内部存储执行逻辑运算,顺序控制、定时、计算和算术运算等操作的指令,并通过数字式和模拟式的输入输出,控制各种类型的机械或生产过程。PLC是微机技术与传统的继电接触控制技术相结合的产物,它克服了继电接触控制系统中机械触点的接线复杂、性低、功耗高、通用性和灵活性差的缺点,充分利用微处理器的优点。
可编程控制器对用户来说,是一种无触点设备,改变程序即可改变生产工艺,因此可在初步设计阶段选用可编程控制器,在实施阶段再确定工艺过程。另一方面,从制造生产可编程控制器的厂商角度看,在制造阶段不需要根据用户的订货要求专门设计控制器,适合批量生产。由于这些特点,可编程控制器问世以后很快受到工业控制界的欢迎,并得到的发展。目前,可编程控制器已成为工厂自动化的强有力工具,得到了广泛的应用。
结合锅炉工艺运行,实施推理规则为:用给煤、鼓风、引风粗调负荷后使系统燃烧满足负荷需求且炉膛燃烧趋于稳定,再采用热效率寻优模型细调风煤比寻优,可有效完成锅炉系统运行达到热效率大值点,实现经济燃烧的目的。
由取暖小区需求供热量、锅炉系统实际总供热量和取暖小区实际消耗热量,以及能量损失等数据组成检测知识库,由检测推理机来实现检测点数据的识别、数据格式的转换、热效率计算、燃烧状况的测定等推理操作,经数据过滤、分类、分析等数据处理后,送锅炉系统信息数据库。
上述小区供暖锅炉智能控制系统运行成功的关键问题,是锅炉燃烧控制知识库的规则。我们考虑控制规则可以来自于四个方面:锅炉燃烧过程运行理论,运行的操作经验,工业现场实际经验的摸索,运行过程中的不断完善。
智能控制系统是用前台语言Visual Basic实现的,上位机KINGVIEW软件将锅炉实时运行的数据存入数据库,表中可清晰了解锅炉每小时运行数据,供、回水温度、炉温、温差、供热量、给热量、耗煤量、室外温度,包括锅炉的热效率和负荷率。锅炉运行情况、节煤情况等一目了然,提高了管理水平。
智能控制系统另外一个的优点是,组织运行策略,计算机了解室外平均温度后,可自动根据组织运行策略,自动起机、自动燃烧、自动寻优、自动停炉,按时打印报表,全自动运行。
燃烧系统的负荷和燃料的协调达到理想状态,从而节约大量燃料和电能,并使锅炉寿命延长。减轻了对大气污染,真正达到了环保的目的。另外,自动化的管理模式保证锅炉运行的、稳定,减轻操作人员的劳动强度。
5 结束语
本文根据智能自动化的系统理论,设计这一供暖锅炉智能控制系统;通过供暖锅炉控制系统的运行环境的取暖需求模型,作为建立智能系统的关键,强调供暖运行效果;采用一种面向应用对象功能实现的自寻优算法模型,克服多回路耦合和煤质干扰,很好的解决了锅炉燃烧控制难题,自动化程度及控制精度都较高,主要技术指标有炉膛负压控制精度:士2Pa;空气过剩系统:小于1.8;渣含碳量:小于15%;热效率比手动控制提高:4%;变频调速节电:30%;节煤:每台锅炉(以20吨每小时为例)年节煤2000吨。本套锅炉系统具有人工智能、全自动运行,提率等优点,为国家大大节约能源,在国内各类型锅炉中具有很好的推广。