7
6ES7212-1BB23-0XB8产品描述
变电站用配电盘运行的稳定性直接影响到向整个区大部分的生产、生活供电,原用的配电盘系统功能简单、自动化程度不高、控制方式落后,对供电局实现无人值守变电站和配网自动化带来很多不变,也不能时刻保证城区电网供电的电源质量。因此,2005年5月对该配电盘进行了设备改造,改造以西门子公司的S7—200PLC做控制,TP270做监控操作,其它配电设备和监测设备均采用国外厂家产品。
新的配电盘通过电压监测模块监测1、2号变电站站用变压器的供电情况,由PLC控制ATS开关(Automatic Transfer Switch)进行自动投切和互投操作,馈线监测模块将馈线装置的状态、动作及多种电能参数进行监控,确保变电站的各辅助系统稳定运行,所有装置的操作、运行情况和电能参数通过PLC在TP270上得以体现和记录,并通过RS-485或LAN将各种信号传送到供电调度和,以便及时进行供电调度和设备检修。
设备改造中使用了西门子公司的224XP-CPU、TP270人机界面、EM221数字量输入模块、EM222数字量输出模块和CP243-1以太网通讯模块。
应用S7-200PLC升级过后的变电站站用配电盘(智能配电屏),改变了以前电能数据采集麻烦、运行方式单一、现场手动操作等问题,现在除了保留的手动操作方式外,根据运行方式PLC能控制ATS开关任意切换在电源I或II上运行,当运行电源进线失压时,另一电源进线能自投或恢复,同时可进行远程操作,解决了目前ATS产品控制投切不准确,操作方式单一和远程控制的问题。改造以前的配电盘上有着各种电能仪表,现在只需一块多功能仪表就能完成电压、电流、频率、有功功率、无功功率等各种电能参数的监测、采集和数据分析,还有谐波分析、模拟量和报警输出等功能。站用配电屏还能监控每一馈电回路的电流和工作状态,整个配电盘的任何一个动作、操作和故障报警都及时显示并储存在TP270上,通过MODBUS总线可以把这些数据传到附近的控制,也可以通过以太网将数据传到数公里之外的调度,以便于进行好的运行维护和管理。
在设计过程中大的问题就是如何将智能仪表的数据通过S7-200PLC读到TP270上。本系统中的智能仪表用的是MODBUS_RUT协议,只能做从站使用,也就是说S7-200PLC做主站去读取仪表的数据,在现行的资料中只有S7--200PLC做MODBUS从站的资料,要S7-200PLC做主站就只有自己编写用自由口做MODBUS主站的程序,由于仪表提供的数据较多且数据地址分散,再加上要求每秒刷新一次,还要做数据的CRC校验,编写这样的通讯程序是有一定难度的,如果逐一地址的编写程序,那么程序就会过长,会影响总循环时间,不但做不到1秒钟刷新一次,可能还会引起端口发送、接收冲突和CRC校验出错,经过反复的研究实验,后在程序中采用了用计数器来轮询地址的方法,从而减少了程序量和总循环时间。部分程序如下:(OB1主要功能为初始化端口为自由口,初始化发送和接收的数据格式,设定轮询时间,轮询和中断连接;SBR5和SBR6做发送和接收数据的CRC校验,CRC检验主要通过字节异或循环,移位循环和公式异或做发送数据的CRC校验;中断1为接收数据;中断2对接收CRC校验结果验证)
PID参数的整定:
1、可以在软件中进行自动整定;
2、自动整定的PID参数可能对于系统来说不是的,就需要手动凭经验来进行整定。P参数过小,达到动态平衡的时间就会太长;P参数过大,就产生调。
PID功能块在梯形图(程序)中应当注意的问题:
1、采用PID向导生成PID功能块;
2、我要说一个简单的也是容易被人忽视的问题,那就是:PID功能块的使能控制只能采用SM0.0或任何1个存储器的常开触点并联该存储器的常闭触点这样的断开的触点!
笔者在以前的一个工程调试中就遇到这样的问题:PID功能块有时间动作正常,有时间动作不正常,而且不正常时发现PID功能块都没问题(PID参数正确、使能正确),就是没有输出。后查了好久,突然意识到可能是使能的问题——我在使能端串联了启动/停止控制的保持继电器,我把它改为SM0.0以后,一切正常!
同时也明白了PID功能块有时间动作正常,有时间动作不正常的原因:有时在灌入程序后保持继电器处于动作的状态才不会出现问题,一旦停止了设备就会出现问题——PID功能块使能一旦断开,工作就不会正常!
把这个给大家说说,以免出现同样失误。
下面是PID控制器参数整定的一般方法:
PID控制器的参数整定是控制系统设计的内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还通过工程实际进行调整和修改。二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行后调整与完善。现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。
PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P\I\D的大小。
比例I/微分D=2,具体值可根据仪表定,再调整比例带P,P过头,到达稳定的时间长,P太短,会震荡,永远也打不到设定要求。
PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下可参照:
温度T:P=20~60%,T=180~600s,D=3-180s;
压力P: P=30~70%,T=24~180s;
液位L: P=20~80%,T=60~300s;
流量L: P=40~**,T=6~60s。
书上的常用口诀:
参数整定找,从小到大顺序查;
先是比例后积分,后再把微分加;
曲线振荡很频繁,比例度盘要放大;
曲线漂浮绕大湾,比例度盘往小扳;
曲线偏离回复慢,积分时间往下降;
曲线波动周期长,积分时间再加长;
曲线振荡频率快,先把微分降下来;
动差大来波动慢。微分时间应加长;
理想曲线两个波,前高后低4比1;
一看二调多分析,调节质量不会低。
经过多年的工作经验,我个人认为PID参数的设置的大小,一方面是要根据控制对象的具体情况而定;另一方面是经验。P是解决幅值震荡,P大了会出现幅值震荡的幅度大,但震荡频率小,系统达到稳定时间长;I是解决动作响应的速度快慢的,I大了响应速度慢,反之则快;D是静态误差的,一般D设置都比较小,而且对系统影响比较小。对于温度控制系统P在5-10%之间;I在180-240s之间;D在30以下。对于压力控制系统P在30-60%之间;I在30-90s之间;D在30以下。
这里介绍一种经验法。这种方法实质上是一种试凑法,它是在生产实践中总结出来的行之有效的方法,并在现场中得到了广泛的应用。
这种方法的基本程序是先根据运行经验,确定一组调节器参数,并将系统投入闭环运行,然后人为地加入阶跃扰动(如改变调节器的给定值),观察被调量或调节器输出的阶跃响应曲线。若认为控制质量不满意,则根据各整定参数对控制过程的影响改变调节器参数。这样反复试验,直到满意为止。
经验法简单,但需要有一定现场运行经验,整定时易带有主观片面性。当采用PID调节器时,有多个整定参数,反复试凑的次数增多,不易得到整定参数。
下面以PID调节器为例,具体说明经验法的整定步骤:
A. 让调节器参数积分系数S0=0,实际微分系数k=0,控制系统投入闭环运行,由小到大改变比例系数S1,让扰动信号作阶跃变化,观察控制过程,直到获得满意的控制过程为止。
B. 取比例系数S1为当前的值乘以0.83,由小到大增加积分系数S0,同样让扰动信号作阶跃变化,直至求得满意的控制过程。
C. 积分系数S0保持不变,改变比例系数S1,观察控制过程有无改善,如有改善则继续调整,直到满意为止。否则,将原比例系数S1增大一些,再调整积分系数S0,力求改善控制过程。如此反复试凑,直到找到满意的比例系数S1和积分系数S0为止。
D. 引入适当的实际微分系数k和实际微分时间TD,此时可适当增大比例系数S1和积分系数S0。和前述步骤相同,微分时间的整定也需反复调整,直到控制过程满意为止。
PID参数是根据控制对象的惯量来确定的。大惯量如:大烘房的温度控制,一般P可在10以上,I=3-10,D=1左右。小惯量如:一个小电机带一台水泵进行压力闭环控制,一般只用PI控制。P=1-10,I=0.1-1,D=0,这些要在现场调试时进行修正的。
PID控制说明:
在工程实际中,应用为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作、调整方便而成为工业控制的主要技术之一。当被控对象的结构和参数不能掌握,或得不到的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数依靠经验和现场调试来确定,这时应用PID控制技术为方便。即当我们不了解一个系统和被控对象﹐或不能通过有效的测量手段来获得系统参数时,适合用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
比例(P)控制 :比例控制是一种简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。
积分(I)控制 :在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了稳态误差,在控制器中引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
微分(D)控制 :在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。 自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。



用户可以把自己编制程序集成到编程软件Micro/WIN中。这样可以在编程时调用实现相同功能的库指令,而不必同时打开几个项目文件拷贝。指令库也可以方便地在多个编程计算机之间传递。
新建库操作步骤:
步:在Micro/WIN的File(文件)菜单中,选择Creat Library...(建立库)命令;或者用鼠标右键单击指令树的Libraries(指令库)分支,选择Creat Library...
二步:在Creat Library对话框中选择哪些子程序要集成为指令库
三步:在Properties(属性)标签中设置
指令库名称
要生成的库文件的目录路径
版本信息
四步:在Protection(保护)标签中设置密码
五步:按OK按钮确定,输出指令库文件
指令库文件扩展名为.mwl,缺省情况下存在Micro/WIN安装目录下的lib文件夹中。库文件可以作为单的文件拷贝、移动。
添加指令库
步:在Micro/WIN的File(文件)菜单中选择Add/Remove Libraries...(添加/删除指令库)命令 ;或者在指令树的Libraries(指令库)分支上单击鼠标右键,选择Add/Remove Libraries...
二步:按Add(添加)按钮,选择新定义的库文件路径。用户自定义库将自动添加到Micro/WIN指令树的Libraries分支下。
调用用户定义指令库
指令库的使用方法与子程序基本一样。
任何一种控制系统都是为了实现被控对象的工艺要求,以提高生产效率和产品质量。因此,在设计PLC控制系统时,应遵循以下基本原则: