• 西门子6ES7223-1BL22-0XA8大量供应
  • 西门子6ES7223-1BL22-0XA8大量供应
  • 西门子6ES7223-1BL22-0XA8大量供应

产品描述

产品规格模块式包装说明全新

西门子6ES7223-1BL22-0XA8大量供应


1、引言


燃烧控制系统是电厂锅炉的主控系统,主要包括燃料控制系统、风量控制系统、炉膛压力控制系统。目前大部分电厂的锅炉燃烧控制系统仍然采用PID控制。燃烧控制系统由主蒸汽压力控制和燃烧率控制组成串级控制系统,其中燃烧率控制由燃料量控制、送风量控制、引风量控制构成,各个子控制系统分别通过不同的测量、控制手段来保证经济燃烧和燃烧。


2、控制方案


锅炉燃烧自动控制系统的基本任务是使燃料燃烧所提供的热量适应外界对锅炉输出的蒸汽负荷的要求,同时还要保证锅炉经济运行。一台锅炉的燃料量、送风量和引风量三者的控制任务是不可分开的,可以用三个控制器控制这三个控制变量,但彼此之间应互相协调,才能工作。对给定出水温度的情况,则需要调节鼓风量与给煤量的比例,使锅炉运行在燃烧状态。同时应使炉膛内存在一定的负压,以维持锅炉热效率、避免炉膛过热向外喷火,保证了人员的和环境卫生。


2.1 控制系统总体框架设计


燃烧过程自动控制系统的方案,与锅炉设备的类型、运行方式及控制要求有关,对不同的情况与要求,控制系统的设计方案不一样。将单元机组燃烧过程被控对象看作是一个多变量系统,设计控制系统时,充分考虑工程实际问题,既保证符合运行人员的操作习惯,又要大限度的实施燃烧优化控制。


P为机组负荷热量信号为D+dPbdt。控制系统包括:滑压运行主汽压力设定值计算模块(由热力系统实验获得数据,再拟合成可用DCS折线功能块实现的曲线)、负荷—送风量模糊计算模块、主蒸汽压力控制系统和送、引风控制系统等。主蒸汽压力控制系统采用常规串级PID控制结构。


2.2 燃料量控制系统


当外界对锅炉蒸汽负荷的要求变化时,相应的改变锅炉燃烧的燃料量。燃料量控制是锅炉控制中基本也是主要的一个系统。因为给煤量的多少既影响主汽压力,也影响送、引风量的控制,还影响到汽包中蒸汽蒸发量及汽温等参数,所以燃料量控制对锅炉运行有重大影响。燃料控制可用图3简单表示。




其中:NB为锅炉负荷要求;B为燃料量;F(x)为执行机构。


设置燃料量控制子系统的目的之一就是利用它来燃料侧内部的自发扰动,改善系统的调节品质。另外,由于大型机组容量大,各部分之间联系密切,相互影响不可忽略。特别是燃料品种的变化、投入的燃料供给装置的台数不同等因素都会给控制系统带来影响。燃料量控制子系统的设置也为解决这些问题提供了手段。


2.3 送风量控制系统


为了实现经济燃烧,当燃料量改变时,相应的改变送风量,使送风量与燃料量相适应。燃料量与送风量的关系见图4。




燃烧过程的经济与否可以通过剩余空气系数是否合适来衡量,过剩空气系数通常用烟气的含氧量来间接表示。实现经济燃烧基本的方法是使风量与燃料量成一定的比例。


送风量控制子系统的任务就是使锅炉的送风量与燃料量相协调,可以达到锅炉的热效率,保证机组的经济性,但由于锅炉的热效率不能直接测量,故通常通过一些间接的方法来达到目的。如图5所示,以实测的燃料量B作为送风量调节器的给定值,使送风量V和燃料量B成一定的比例。




在稳态时,系统可保证燃料量和送风量间满足


选择 使送风量略大于B燃烧所需要的理论空气量。这个系统的优点是实现简单,可以来自负荷侧和燃料侧的各种扰动。


2.4 引风量控制系统


为了保持炉膛压力在要求的范围内,引风量与送风量相适应。炉膛压力的高低也关系着锅炉的和经济运行。炉膛压力过低会使大量的冷风漏入炉膛,将会增大引风机的负荷和排烟损失,炉膛压力太低甚至会引起;反之炉膛压力高且高出大气压力的时候,会使火焰和烟气冒出,不仅影响环境卫生,甚至可能影响设备和人生。引风量控制子系统的任务是保证一定的炉膛负压力,且炉膛负压控制在允许范围内,一般在-20Pa左右。


控制炉膛负压的手段是调节引风机的引风量,其主要的外部扰动是送风量。作为调节对象,炉膛烟道的惯性很小,无论在内扰和外扰下,都近似一个比例环节。一般采用单回路调节系统并加以前馈的方法进行控制,如图6所示。




图中 为炉膛负压给定值,S为实测的炉膛负压,Q为引风量,V为送风量。由于炉膛负压实际上决定于送风量和引风量的平衡,故利用送风量作为前馈信号,以改善系统的调节性能。另外,由于调节对象相当于一个比例环节,被调量反应过于灵敏,为了防止小幅度偏差引起引风机挡板的频繁动作,可设置调节器的比例带自动修正环节,使得在小偏差时增大调节器的比例带。对于负压S的测量信号,也需进行低通滤波,以抑制测量值的剧烈波动。


3、系统硬件配置


在锅炉燃烧过程中,用常规仪表进行控制,存在滞后、间歇调节、烟气中氧含量过给定值、低负荷和烟气温度过低等问题。采用PLC对锅炉进行控制时,由于它的运算速度快、精度高、准确,可适应复杂的、难于处理的控制系统。因而,可以解决以上由常规仪表控制难以解决的问题。所选择的PLC系统要求具有较强的兼容性,可用小的投资使系统建成及运转;其次,当设计的自动化系统要有所改变时,不需要重新编程,对输入、输出系统不需要再重新接线,不须重新培训人员,就可使PLC系统升级;后,系统性能较高。硬件结构图如图7所示。




根据系统的要求,选取西门子PLCS7-200 CPU226 作为控制,同时还扩展了2个EM231模拟量输入模块和1个CP243-1以太网模块。CPU226的IO点数是2416,这样可以满足系统的要求。同时,选用了EM231模块,它是AD转换模块,具有4个模拟量输入,12位AD,其采样速度25μs,温度传感器、压力传感器、流量传感器以及含氧传感器的输出信号经过调理和放大处理后,成为0~5V的标准信号,EM231模块自动完成AD转换。


S7-200的PPI接口的物理特性为RS-485,可在PPI、MPI和自由通讯口方式下工作。为实现PLC与上位机的通讯提供了多种选择。


为实现人机对话功能,如系统状态以及变量图形显示、参数修改等,还扩展了一块Eview500系列的触摸显示屏,操作控制简单、方便,可用于设置系统参数,显示锅炉温度等。还有一个以太网模块CP243-1,其作用是可以让S7-200直接连入以太网,通过以太网进行远距离交换数据,与其他的S7-200进行,通信基于TCPIP,安装方便、简单。


4、系统软件设计


控制程序采用STEP7-MicroWin软件以梯形图方式编写,其软件框图如图8所示。




S7-200PLC给出了一条PID指令,这样省去了复杂的PID算法编程过程,大大方便了用户的使用。使用PID指令有以下要点和经验:


(1)比例系数和积分时间常数的确定。应根据经验值和反复调试确定。


(2)调节量、给定量、输出量等参数的标准归一化转换。


(3)按正确顺序填写PID回路参数表(LOOP TABLE),分配好各参数地址。


5、结束语


单元机组燃烧过程控制系统在某火电厂发电机组锅炉协调控制系统中投入使用。实际运行情况表明:由于引入负荷模糊前馈,使得锅炉燃烧控制系统作为协调控制的子系统,跟随机组负荷变化的能力显著提高,风煤比能够在静态和动态过程中保持一致;送、引风控制系统在逻辑控制系统的配合下运行的平稳性和性提高,炉膛负压波动减小,满足了运行的要求;在机组负荷不变时,锅炉燃烧稳定,各被调参数动态偏差显著减少,实现了锅炉的优化燃烧;采用非线性PID调节方式,解决了引风挡板的晃动问题


202202221739072455394.jpg20220222173907301904.jpg202202221739073176584.jpg



 【前言】1969年台可编程控制器产生后,经过30多年的发展,现在可编程控制器已经成为重要、、应用场合广泛的工业控制微型计算机。可编程控制器应用于广播可实现广播的自动开关机及采集并监控的各个参数,出现异态时报警,有备用还能实现自动倒备份。这样便能实时发现的异常,及时处理,降低停播率,能很好的保节目的、播出,并能大大减轻的值班任务。


可编程控制器(Programmable Controller)简写成 PLC,其中 L为逻辑(Logic)的意思,台可编程控制器是1969年在美国面世的。经过30多年的发展,现在可编程控制器已经成为重要、、应用场合广泛的工业控制微型计算机。可编程控制器是一种数字运算操作的电子系统,专为在工业环境下应用而设计;它采用一类可编程的存储器,用于其内部存储程序,执行逻辑运算、顺序控制、定时、记数和算术操作等面向用户的指令;并通过数字式或模拟式输入/输出控制各种类型的机械或生产过程。可编程控制器及其有关外部设备,都按易于与工业控制系统联成一个整体、易于扩充其功能的原则设计。可编程控制器具有诸多优点:(1)PLC的生产厂家都着力于提高性的指标。(2)PLC还具有编程方便、易于使用的优点。(3)PLC控制功能强,除基本的逻辑控制、定时、计数、算术运算等功能外,配合特殊功能模块还可实现点位控制、PID运算、过程控制、数字控制等功能,为方便工厂管理又可以与上位机通信,通过远程模块可以控制远方设备。(4)PLC的扩展以及与外部联接为方便。所以可编程控制器应用于广播可实现广播的自动开关机,及采集并监控的各个参数,出现异态时报警,有备用还能实现自动倒备份。这样便能实时发现的异常,及时处理,降低停播率,能很好的保节目的、播出,并能大大减轻的值班任务。


要用PLC实现广播的自动控制,要考虑许多因素,以我开发过的“DX-600中波自动控制系统”为例,我将整个系统设计分为以下四个步骤。


要确定PLC的控制及监视范围。分析需要监视的指标,以及需要自动控制的操作,比如入射功率取样、反射功率取样、水位取样、电源取样、开机操作、关机操作、升功率操作、降功率操作等。采样点多少和控制范围的确定依的不同而不同。接着要选择适当的PLC,一方面选择多大容量的PLC;另一方面选择什么公司的PLC以及外围设备。对个问题,要对进行详细分析,把所有的I/O点找出来,包括开关量I/O和模拟量I/O以及这些点的性质。I/O点的性质主要指它们是直流信号还是交流信号,电压多大,是采样点还是输出控制点,输出是用继电器型还是用晶体管或是可控硅型。知道这些以后,就可以定下选用多少点和I/O是什么性质的PLC了。对于二个问题,则有以下几个方面考虑:a、功能方面。b、价格方面。可编程控制器的主机选定后,一般还要选择模拟量采集模块,模块的多少依据模拟量的多少而定。显示设定单元视需要选择与否。在本例“DX-600中波自动控制系统”中,经分析该系统需要17路开关量输出、11路开关量输入、6路模拟量采集,故采用了SIMATIC S7-226型PLC,两快EM-23模拟量采集模块。SIMATIC S7-226支持24路开关量输入,16路开关两输出,每块EM-231支持4路模拟量输入点,两块就相当于8路模拟量输入点,能满足系统需要,并且为日后的系统扩展升级留有了空间。


2、PLC的I/O地址分配


输入/输出信号在PLC接线端子上的地址分配是进行PLC控制系统设计的基础。对于软件设计来说,I/O地址分配以后才可以进行编程;对于PLC的外围接线来说,只有I/O地址确定以后,才可以绘制电气接线图、装配图。I/O地址的分配能将类似的信号点分配连续的I/O地址,同时把I/O点的名称、代码和地址以表格的形式列写出来。初学者往往不会注重这些,开发过实际项目就会知道这将为以后的维护升级工作带来很大的方便。下图例出了本文实例《DX-600中波自动控制系统》中部分I/O点的表格,供大家参考。




表1


3、监控系统的硬件和软件设计


系统设计包括硬件系统设计和软件系统设计。硬件系统设计主要包括PLC及外围线路的设计、电气线路的设计等。软件系统设计主要指编制PLC监控程序,有些系统还包括上位机程序的编写,比如在本例中就包括上位机程序。硬件系统设计主要是设计出电气控制系统原理图,电气控制元器件的选择等,在这里硬件设计不做详细阐述,主要给大家阐述软件设计的步骤和过程。在PLC程序设计时,除I/O地址列表外,还要把在程序中用到的中间继电器、定时器、计数器(PLC中的软元件)和存储单元以及它们的作用或功能列写出来,以便程序的编写和阅读。下面结合我开发过的“ DX-600中波自动控制系统”具体介绍广播自动控制系统PLC程序的编写及调试。


西门子S7-200CPU的编程软件为 V3.1 STEP 7 MicroWIN SP1。该软件是基于bbbbbbs的应用软件,它支持32位bbbbbbs95,bbbbbbs98和bbbbbbsNT操作系统。他支持STL编辑器、阶梯图编辑器和 FBD三中编辑器。你可以选择自己熟悉的编辑器。为端子号分配地址是编程的部,实际编程时为了增加程序的可读性,常用带有实际含义的符号作为编程元件代号,而不是直接用元件在主机的直接地址。例如编程中的“高功率开机”作为编程元件代号,而不用Q0.1。符号表可用来建立自定义符号与直接地址之间的对应,并可附加注释,有利于程序结构清晰易读,以及日后软件的维护新,在实际的开发中应该注重这点,它往往能起到事半功倍的效果。按监控系统要完成的任务PLC程序可分为三个主要部分:l、广播及附属设备(比如空调等)的自动开与自动关;2、模拟量的采集监控以及开关量的采集监控;3、与上位机通信,实现校时、数据的显示、参数的设置和故障记录等。


1、广播及附属设备的自动开与自动关:要实现的自动开关机,向PLC提供的开关机时间表,该时间表的存储,应保证当PLC断电的情况下不丢失。所以把它放入数据快可确保数据的稳定。PLC内部有自己的系统日期和时钟,PLC可通过相应的指令读实时时钟和设定实时时钟。PLC内部用8个字节表示日期和时钟,他们都用BCD码表示,从低到高分别表示年、月、日、小时、分钟、秒,7个字节为0,8字节表示星期。值得注意的是系统不会检查、核实时钟各量的正确与否,所以在设置时钟和日期时确保输入的数据是正确的,还有,不能同时在主程序和中断程序中使用读写时钟指令,否则,产生非致命错误,中断程序中的实时时钟指令将不被执行。在编写自动开关机程序段时,程序应该不断的读取系统时钟,并与数据块中的开关机时间表进行比较,如果与时间表中的时间吻合则执行相应的操作如开机、关机等,在本例中我用READ_RTC指令读出PLC的内部时钟,接着用BCD_I将BCD码的PLC时钟转换为十进制PLC时钟,再拿它与数据区中的开关机时间表比较,如果吻合则执行相应操作。


2、模拟量的采集监控以及开关量的采集监控:模拟量的采集可通过EM231、EM232或EM235模拟量输入输出模块来实现。在本例中采用的是EM231,可通过DIP开关设置模拟量的输入范围,单性:满量程输入0到10V、分辨率2.5mV;满量程输入0到5V、分辨率1.25mV;满量程输入0到20mA、分辨率5μA;双性:满量程输入负5V到正5V、分辨率2.5mV;满量程输入负2.5V到正2.5V、分辨率1.25mV,根据实际需要设定响应的档位,如还不能满足则采样点要经过电路或仪器转换成合适的信号。要实现模拟量的监控就提供上限和下限,模拟量的上下限应该和开关机时间表一起放入数据快,程序应不断的取的模拟量的值并与数据块中的上下限比较,如果越限则报警或执行相应的操作。开关量的监控相对简单,不需要扩展模块,从PLC高低电位后直接可进行判断,有一点值得注意,为了防止干扰,模拟量应取多次的平均值,开关量的检测用延时接通电路。这样能很好的避免误报警和误操作。在本例《DX-600中波自动控制》系统中,模拟量由于开始没有取多次平均值经常出现误报警,开关量也偶尔出现误报警,通过对模拟量多次取平均值、开关量采用10毫秒延迟电路后得到解决。


3、与上位机通信,实现校时、数据的显示、参数的设置和故障记录等:PLC与上位机通信可采用自由通讯协议,自由通信口(Freeport Mode)方式是S7-200PLC的一个很有特色的功能。S7-200 PLC的自由通信,即用户自己定义通信协议,波特率为38.4KB/s。它使S7-200 PLC可以与上位 PC机进行通信。PC机的RS-232可通过PC/PPI电缆与 S7-200 PLC连接起来进行自由通讯。与PC连接后,PLC程序可以通过使用接收中断、发送中断、发送指令(XMT)和接收指令(RCV)对通讯口操作。在自由通讯口模式下,通讯协议由用户程序控制,协议的依系统不同而不同,在“DX-600中波自动控制”系统中为保证的正确无误,还采用了一种数据校验机制,把要传输的数据块中的各字节做“与”操作,得到的“和”作为校验字节。此种校验方法有简单实用等特点。通过SMB30(口 0)或SMB130(口1)允许自由口模式,而且只有在CPU处于RUN模式时才能允许。当CPU处于STOP模式时,自由通讯口停止,通讯口转换成正常的PPI协议操作。通过与PC的通讯,PLC把采集到的数据发送到PC上位机,这样上位机程序经过响应处理就能实现数据的图形显示。的开关机时间表、模拟量的上下限也能很方便的通过上位来修改,而不必修改PLC程序。PLC的时钟也能通过上位机来设置(校时)。另外,通过上位机还可以定时抄表、记录故障的发生时间、类型,停播的时间等等,方便技术人员维护。上位机程序的编写可通过任一款可视化编程软件如 VB,VC,C++Builder等,建议用C++Builder,它有功能强大,易学等特点。


四、监控系统的调试


系统调试分模拟调试和联机调试。模拟调试可借助于模拟开关和 PLC输出端的输出指示灯进行;需要模拟信号I/O时,可用电位器和万用表配合进行。调试时,可利用上述外围设备模拟各种现场开关和传感器状态,然后观察PLC的输出逻辑是否正确。如果有错 误则修改后反复调试。S7-200不但能在PC机上编程,还可在PC上直接进行模拟调试。联机调试时,可把编制好的程序下载到现场的PLC中。有时PLC也许只有这一台,这时要把PLC安装到控制柜相应的位置上。调试时一定要先将主电路断电。只对控制电路进行调试即可。通过现场联机调试信号的接入常常还会发现软硬件中的问题,经过反复测试系统后,才能后交付使用。


本例“DX-600自动控制系统”投入使用后,的确大大减轻了值班任务,而且能及时发现一些人工值班不易发现的故障,通过上位机对的实时数据及故障记录都能很好的保存,供技术人员维护用。

一、概述


随着凯迪恩PLC应用范围的增加,在某些已经具有了很高的度。压瓦机就是这样。由于凯迪恩PLC性高、精度高、价格低,适合压瓦机自动控制,现在已广泛应用到单剪、琉璃瓦、C型钢等十几种彩钢瓦设备上。其中琉璃瓦和C型钢的控制系统以设计理念,通用性强,应用范围广而具有行业水平。下面简单介绍一下在C型钢设备上的应用。


二、工艺简述


带钢从设备的尾部送入,经过各种压辊压制成C型钢从头部送出。传统工艺中,C型钢压制成型后需要人工进行定长切断,再搬运到冲孔设备按照客户要求的尺寸打孔,生产不能连续,效率不高。凯迪恩公司技术人员与设备生产厂家密切配合,逐步改进生产工艺,终实现了全工艺过程自动控制,飞跃性地提高了生产效率,增加了客户设备的技术含量和附加值。


改进过程分三步完成。步改进,增加长度测量装置和飞锯,当压制长度达到设定的长度时飞锯动作,自动切断型材。二步改进,加一台打边孔的液压冲孔设备,一次同时冲四个孔,飞锯从中间切断,这样就形成了相邻两段C型钢的头、尾各两个边孔。三步改进,再增加一台打中孔的设备,在带钢压制过程中按用户设定的间距冲出中孔,大可以打16个中孔。四步改进,针对新型C型钢要求在型材中部打出双孔的要求,将边孔4孔冲孔模具改为2孔模具,修改打边孔的程序,使得边孔冲压设备能够在中部打出双孔,并且孔距由用户设定,大可以打8组双孔。这样就可以满足所有C型钢的要求了。现在以凯迪恩PLC为的C型钢控制系统能生产这种要求的型材,孔距和长度精度满足要求。


三、硬件配置


输入点:检测开关、操作开关等。检测开关有:飞锯的起点、终点开关;边孔的起点、终点开关;中孔的起点、终点开关;编码器(A、B相)


;


操作开关有:方式选择开关(自动、手动、中位);辊道前进、后退;飞锯切断、返回;中孔下降、上升;边孔下降、上升;急停开关。


输出点:辊道电机(变频器)、液压电机;飞锯前进、后退阀;中孔下降、上升阀;边孔下降、上升阀;


硬件配置: KDN-K306-24AR 一台


KDN-K321-08DX 一台


KDN-KA文本屏 一台


四、控制工艺


PLC和文本屏程序包括六大功能:设备参数设定、手动对位、生产参数设定、报警查询、生产画面、厂家信息。以下是具体特点:


·设备参数是出厂前工厂内部设定的参数,是由设备制造厂的人员来设定的。


·生产参数是生产人员设定的,比如生产的张数、边孔个数、中孔个数及长度等参数。


·报警查询是当有报警发生时,显示画面自动跳转到报警画面。生产人员处理故障后按复位键,设备可转入正常生产。


·厂家信息是显示生产厂家名称、地址、电话等信息。


· 生产画面是正常生产时显示的信息,包括生产设定的张数、实际的张数、设定长度、当前长度等等。


·手动对位是一种很灵活的方式,可以生产任意长度的C型钢。


·密码功能是凯迪恩公司根据客户要求设计的保护设备厂家利益的特色功能,每一套设备一个密码,由设备厂家自行管理。


· 自动补偿功能保证成品精度,既能补偿过冲量,也能补偿收缩量。


·设备参数可以保存,生产参数保存三天,如果断电时间不过三天,上电后仍可继续按断电时的状态生产。


五、结束语


凯迪恩PLC在压瓦机行业的批量应用,证明了凯迪恩PLC优良的性能。同时凯迪恩工程技术人员具有丰富行业经验,能够与设备生产厂家紧密协作,共同推出适合行业特点的控制系统解决方案,这种协作将有利于设备厂家提升产品的竞争力。



http://zhangqueena.b2b168.com

产品推荐