产品描述
西门子模块6ES7223-1BL22-0XA8大量供应
在plcSTEP7中对程序块加密 ,您能够通过STEP7软件的KNOW_HOW_PROTECT功能实现对您程序代码的加密保护。
如果您双击鼠标打开经过加密的程序块时,您只能看到该程序块的接口数据(即IN, OUT 和 IN/OUT 等类型的参数)和注释信息,而程序块中的代码及代码的注释,临时/静态变量是不能被看到的。同时您也无法对加密保护的程序块做出任何改动。
如何实现程序块保护:
1.打开程序编辑窗口LAD/FBD/STL;
2.将要进行加密保护的程序块生成转换为源代码文件(通过选择菜单 File—>Generate source 生成);
3.在LAD/FBD/STL 窗口中关闭您的程序块,并在SIMATIC Manager项目管理窗口的source文件夹中打开上一步所生成的source文件;
4.在程序块的声明部分,TITLE行下面的一行中输入” KNOW_HOW_PROTECT”;
5.存盘并编译该source文件(选择菜单FileàSave,FileàCompile);
6.现在就完成了您程序块的加密保护;
取消对程序块的加密保护
1.打开程序块的Source源文件;
2.删除文件中的KNOW_HOW_PROTECT;
3.存盘并编译该source文件;
4.现在程序块的加密保护已经取消。
注释:如果没有 STL source 源文件,您是无法对已经加密的程序块进行编辑的;
喷油器是柴油内燃机的一个关键部件,是油泵油嘴行业中的主导产品之一。随着我国汽车工业的发展,对喷油器的需求无论在数量上还是质量上都有了新的要求,针对这一情况,我们设计制造了用来加工喷油器的组合机床。
该机床的机械结构复杂,动力头均由法国制造。要求加工精度高,电气挖掘系统功能强,工件加工动作紧,生产效。
为了实现该机床钻孔、扩孔、铰孔、攻丝及复合钻孔等功能,我们选用了SIEMENS公司的SIMATIC S7-300可编程控制器和OP15字符操作员面板来达到电气控制的目的,使机床完成在自动方式、半自动方式和手动调零方式下的运行,并且可进行参数的设置及运行状态显示。当机床出现故障时,及时地发出报警信息,准确地排除故障,这种直观的显示方式,提供了良好的人机交互界面。
S7-300可编程控制器的结构为导轨式模块组合,易于换,可任意选择所需要的模块。而与之相配套的STEP BASIC软件则功能加强大,具有多样化的编程方式,可在线调试程序或监视标志位、定时器、计数器的实际运行状态,实现PLC的故障诊断、信息查询等功能。
OP15字符显示操作员面板可直接显示状态信息、错误住处和过程变量,这为使用者了角机床运行状态和故障住处带来了很大的方便。
OP15的编程软件PROTOOL/LITE,用于定义OP15的功能和接口,可实现各种显示的画面。
OP15通过MPI接口与S7-300可编程控制器连接,并由S7程序通过用户数据区建立和OP15的通讯。
有了上述的硬件和软件的支持,则非常有益于系统的软件设计。
机床的程序设计采用的是分布式编程,程序分成立的指令块,每个块包含给定的作业组的逻辑。
使用的编程方法是梯形图、语句表,根据实现的名作业功能编写出显示块、参数设置块、工作台运行块、自动循还块、动力注调整块等。这块程序块由组织块OB1调用,实现整体和程序的协调运行。
该机床经过几年的运行表明,整个系统设计
除上述输入输出继电器外,其余的均属内部继电器。 内部继电器实质上是一些存储器单元,它们不能直接控制外部负载,只能在PLC内部起各种控制作用,或直接受外部信号控制。在梯形图中它们也可用线圈和触点来表示,线圈的状态由逻辑关系控制,触点相当于读继电器的状态,因此可在梯形图程序中被无限次使用。CPM1A系列PLC的内部继电器及其通道号表示可分为以下几类:
(1)内部辅助继电器(AR) 内部辅助继电器的作用是在PLC内部起信号的控制和扩展作用,相当于接触继电器线路中的中间继电器。CPM1A机共有512个的内部辅助继电器,其编号为20000~23115,所占的通道号为200CH~231CH。内部辅助继电器没有掉电保持状态的功能。
(2)暂存继电器(TR) 暂存继电器用于具有分支点的梯形图程序的编程,它可把分支点的数据暂时贮存起来。CPM1A型机提供了8个暂存继电器,其编号为TR0~TR7,在具体使用暂存继电器时,其编号前的“TR”一定要标写以便区别。TR继电器只能与LD,OUT指令联用,其他指令不能使用TR作数据位。
(3)保持继电器(HR) 保持继电器用于各种数据的存储和操作,它具有停电记忆功能,可以在PLC掉电时保持其数据不变。保持作用是通过PLC内的锂电池实现的。保持继电器的用途与内部辅助继电器基本相同。CPM1A系列PLC中的保持继电器共有320个,其编号为HR0000~HR1915,所占的通道号为HR00~HR19。在编程中使用保持继电器时,除了标明其编号外,还要在编号前加上“HR”字符以示区别,例如“HR0001”。
(4)定时/计数器(TIM/CNT) 在CPM1A系列PLC中提供128个定时/计数器,使用时,某一编号只能用作定时器或计数器,不能同时既用作定时器又用作计数器,如已使用了TIM001,就不能再出现CNT001,反之亦然。
此外,在CPM1A系列PLC中,对于上述继电器编号,也可以用来进行高速定时(又称高速定时器TIMH)和可逆计数(又称可逆计数器CNTR),它们在使用时需要用特殊指令代码来。
(5)内部继电器(SR) 内部继电器用于监视PLC的工作状态,自动产生时钟脉冲对状态进行判断等。其特点是用户不能对其进行编程,而只能在程序中读取其触点状态。
CPM1A系列PLC中常用的15个继电器及它们的具体编号和功能如下:
25200继电器:高速计数复位标志(软件复位)。
25208继电器:外设通讯口复位时仅一个扫描周期为ON,然后回到OFF状态。
25211继电器: 强制置位/复位的保持标志。在编程模式与监视模式互相切换时,ON为保持强制置位/复位的接点;OFF为解除强制置位/复位的接点。
25309继电器:扫描时间出错报警。当PLC的扫描周期过100s时,1809变ON并报警,但CPU仍继续工作;当PLC的扫描周期过130s时,CPU将停止工作。
25313继电器:常ON继电器
25314继电器:常OFF继电器
25315继电器:次扫描标志。PLC开始运行时,25315为ON一个扫描周期,然后变OFF。
25500~25502继电器:时钟脉冲标志。这3个继电器用于产生时钟脉冲,可用在定时或构成闪烁电路。其中,25500产生0.1s脉冲(0.05sON/0.05sOFF),在电源中断时能保持当前值;25501产生0.2s脉冲(0.1sON/0.1sOFF),具有断电保持功能;25502产生1s脉冲(0.5sON/0.5sOFF),具有断电保持功能。
25503~25507继电器:这五个继电器为算术运算标志。其中,25503为出错标志,若算术运算不是BCD码输出时,则25503为ON;25504为进位标志CY,若算术运算结果有进位/错位时,则25504为ON;25505为大于标志,在执行CMP指令时,若比较结果“>”,则25505为ON;25506为相等标志EQ,在执行CMP指令时,若比较结果“=”,则25506为ON;25507为小于标志LE,在执行CMP指令时,若比较结果“<”,则有25507为ON。
(6)数据存储继电器(DM) 数据存储继电器实际是RAM中的一个区域,又称数据存储区(简称DM区)它只能以通道的形式访问。CPM1A系列PLC提供的读/写数据存储器寻址范围为DM0000~DM1023(共1023字),只读数据存储器寻址范围为DM6144~DM6655(共512字)。编程时需要在通道号前标注“DM”,DM区具有掉电保持功能。
在众多生产领域中,经常需要对贮槽、贮罐、水池等容器中的液位进行监控,以往常采用传统的继电器接触控制,使用硬连接电器多,性差,自动化程度不高,目前已有许多企业采用控制器对传统接触控制进行改造,大大提高了控制系统的性和自控程度,为企业提供了的生产。本文在此介绍一种采用可编程控制器(PLC)对液位进行监控的一种方法,其电路结构简单,投资少(可利用原有设施改造),监控系统不仅自动化程度高,还具有在线修改功能,灵活性强,适用于多段液位监控场合。
1.控制要求
控制系统可以根据生产的需要将液位分为多段来设定,并分段显示,当液位为自动启动料泵加液,液位到达设定值时发出声光报警,并停泵;操作人员可通过确认按钮解除音响报警信号,闪烁灯光转平光;系统具有手动/自动两种控制方式,并设有试验功能。
2.PLC选型
目前在上有从美国、德国、日本等国引进的多种系列PLC,国内也有许多厂家组装、开发数十种PLC,故PLC系列标准不一,功能参差不齐,价格悬殊。在此情况下,PLC的选择应着重考虑PLC的性能价格比,选择性高,功能相当,负载能力合适,经济实惠的PLC。本文介绍以四段液位控制对象为例,据对多种因素的分析比较及监控系统输入、输出点数的要求,选用日本立石(OMRON)公司C20P型PLC。
3.系统硬件配置
为实现液位的手动/自动控制,需要输入口12点,输出口8点,选用C20P 20点I/O单元的PLC,输入光电隔离,输出继电器隔离,负载能力强;液位检测采用干簧管传感器,手动/自动转换、运行/试验转换和液位设定采用双位旋钮,手动启泵、停泵和确认、试验采用常开按钮;输出选用电子音响报警器和24V直流指示灯、继电器。参见图一系统硬件配置图。
图一 系统硬件配置图
为节省输入口数量,节省投资,本系统运行/试验功能的转换采用了对I/O模块接线的优化,使PLC输入模块中1个输入节点起到2个输入节点的作用,完成PLC工作在两种方式下的I/O功能。参见图二I/O模块接线的优化。
图二 I/O模块接线的优化
系统正常运行时,运行/试验转换旋钮S接通1-3接点,各试验按钮不起作用,液位信号由各干簧管传感器传输给PLC;系统处于试验状态时,S接通1-2接点,各传感器输入信号不起作用,此时可用各试验按钮模拟各段液位信号传输给PLC。两种控制方式下的两个信号共用一个输入节点,成倍提高I/O端口的利用率,节省I/O点数。
4.系统软件设计
4.1 控制程序流程图
图三 系统流程图
4.2 编程说明
= 1 \* GB3 ① 本系统为液位的双位控制系统。液位可分四段设定和显示,在液位时自动启泵,当液位到达设定值时自动停泵。
= 2 \* GB3 ② 采用IL/ILC分支指令,通过0008旋钮实现手动/自动两种功能的选择,当0008旋钮闭合时,自动指示灯亮,系统执行IL/ILC分支内程序,完成自动监控;当0008旋钮打开时,手动指示灯亮,系统执行分支外程序,通过0010、0011旋钮实现手动启泵、停泵。
= 3 \* GB3 ③ 液位由0004~0007旋钮分、较低、较高、四段设定,系统设置由低到高的权,即当多个设定旋钮同时闭合时,低液位设定。
= 4 \* GB3 ④ 采用干簧管检测液位时,当液位到达检测点时其触点闭合,指示灯点亮;液位离开检测点时其触点打开,为保证相应测量段指示灯不立即熄灭及不受液位波动的影响,每段指示灯的控制均采用KEEP保持指令,只有当液位上升或下降到相邻段时指示灯才熄灭。
= 5 \* GB3 ⑤ 当液位到达检测点时,液位指示灯闪烁,灯光闪烁因子采用内部闪烁内标1902,以1S为周期闪烁;若液位到达设定值时,自动停泵,并设置电子音响报警,报警声设计为响3S停2S,循环30S后自停,或在30S内按0009确认按钮停音响,指示灯传平光。电子音响报警和泵的启停同样考虑液位的波动影响,设计时采用KEEP保持指令和DIFU微分指令联合使用。
= 6 \* GB3 ⑥ 开车时,液位或液位时,需先手动启泵,再切换成自动运行;或入试验方式,按液位试验按钮启动料泵,再进入自动运行方式。
1 引言
莱钢中小型轧钢生产线于97年建成投产,主要生产圆钢、弹簧扁钢、槽钢和螺纹钢。该生产线PLC控制系统由ABB公司提供,其自动控制系统采用ABBMasterPiece200/1PLC控制系统,实现了18架轧机以及冷床、冷剪和码垛机的自动控制。基础自动化系统采用ABB公司的RMC200轧钢控制系统,它是一个开放型集散控制系统,由一套MP200/1过程站和一套AS520操作员站组成。过程站由一个CPU机架带一个I/O机架组成,CPU机架上安装了CPU模板DSPC172、内存模板*B176以及32通道的DI/DO模板,通过通讯模板DSCS140连接到MasterBus300总线上,与其它过程站进行通讯,I/O机架由总线扩展模块DSBC172实现总线扩展。
操作员站采用HP-UNIX工作站,并通过实时板连接到MasterBus300的冗余接口,通过它操作人员可直接对现场设备进行监控,主要功能有1)轧钢生产设备的启停(2)设备数据设定和实时监控(3)事件与报警清单的显示与打印等。系统的主要画面有启动画面、设定画面、维护画面、事件画面和报警画面。
2 PLC诊断轧钢生产设备故障的基本原理
轧钢设备的故障信号有数字量和模拟量之分,PLC采用不同的方法对这两种信号对应的故障进行诊断。
2.1基于数字量信号的故障诊断
PLC对数字量信号的识别是通过其数字量输入模块完成的。PLC控制轧钢生产设备时,设备中的压力、温度、液位、行程数字及操作按钮等数字量传感器与PLC的输入端子相连,每个输入端子在PLC的数据区中分配有一个“位”,每个“位”在内存中为一个地址。读取PLC输入位的状态值可作为识别数字量故障信号的根据。诊断数字量故障的过程,实质就是将PLC正常的输入位状态值与相应的输入位的实际状态值相比较的过程。如果二者比较的结果是一致的,则表明设备处于正常工况,不一致则表明对应输入位的设备部位处于故障工况。这就是PLC诊断基于数字量信号故障的基本原理。这种诊断方法,故障定位准确,可进行实时在线诊断。通过PLC的图形功能块编程,还可将故障诊断融入过程控制,达到保护轧钢设备的目的。
2.2基于模拟量信号的故障诊断
PLC对模拟量信号的识别是通过PLC的模拟量输入输出模块来完成的。模拟量输入输出模块采用A/D转换原理,输入端接收来自传感器或变送器的模拟信号,输出端输出的模拟信号作用于PLC的控制对象。PLC诊断模拟量故障的过程,实质就是将在相应A/D通道读到的监测信号的模拟量的实际值与系统允许的限值相比较的过程。如果比较的结果是实际值远离限值,则表明轧钢生产设备对应的受监控部位处于正常状态,如果实际值接近或达到限值,则为不正常状态。判断故障发生与否的限值根据实际系统相应的参数变化范围确定,利用PLC上的模拟量设定开关可设置该限值。
当模拟量的实际值达到模拟量设定开关的设定值,PLC还能按照一定的逻辑关系启动开关量模块上的输出位,或者从PLC的通讯口主动发起通讯,从而输出故障诊断的,并据此实现对轧钢生产设备的控制。
2.3基于中断方式的故障诊断
PLC的中断方式有:
(1)输入中断;
(2)间隔定时器中断;
(3)高速计数器中断。其中,输入中断特别适合于轧钢生产设备的故障诊断。它对应于工业操作站的硬中断,属于外部中断,但PLC的输入中断可用PLC的外部指令来屏蔽。将轧钢生产设备的故障信号作为PLC的输入中断源,一旦出现故障信号,CPU立即响应,停止正在执行的程序,转到中断子程序中去,即可方便地对故障进行处理。它与直接利用PLC的内部逻辑完成故障诊断的不同之处在于:采用输入中断处理故障时,可停止PLC主程序的执行过程,而直接利用PLC的输入和内部逻辑处理故障时,PLC的主程序仍处于运行状态。因此,要根据故障对轧钢生产设备的影响程度选择合适的故障诊断方式。PLC的输入中断方式对后果严重的突发故障的处理特别有用。3PLC在故障诊断系统中的作用
故障诊断系统是典型的人机系统,根据系统中的信息流向和功能划分的结果[1],基于操作站智能化的故障诊断系统,如图2所示。
系统的输入模块要完成轧钢生产设备故障检测信号、控制指令和知识的接收工作。处理模块要求能自动实现特征参数提取、控制指令代码转换的功能。知识的整理和表达由领域和系统协作完成。控制模块是故障诊断系统的,它根据控制指令,利用知识,完成从故障特征到故障原因的识别工作。控制模块的功能越完善,故障诊断系统的智能化程度越高。输出模块通过声光报置和人机界面,给出故障定位、预报和解释的结果。其中,人机界面还能提供排除故障的技术路线。实现信息源从输入模块到输出模块的全自动流向,减少人在其中的干预作用,是轧钢生产设备对其故障诊断系统的要求。采用PLC的故障诊断系统,有助于实现故障诊断过程的自动化。
4利用PLC和操作站实现智能化诊断的方式
实现轧钢生产设备故障诊断的智能化,可充分利用知识,提高诊断效率,是故障诊断技术发展的一个重要方向。由于目前的PLC产品不具备自动和存储知识的功能,所采用的编程语言无法完成控制层中的计算推理功能,因此,单纯采用PLC的故障诊断系统的智能程度是相当有限的。为此,可利用网络技术和通讯技术,将PLC和操作站联接成网络,互相取长补短,共同构成故障诊断的硬件系统。PLC采用并行分布式结构,作下位机使用,操作站作为上位机,可完成PLC的程序下装,实施对多台PLC的管理,进行复杂的数据运算,建立数据库,存储知识,其输入输出设备可用作诊断过程的人机交互。PLC与操作站通过两种方式联接成一个整体:一是通过PLC的通讯口和操作站的通讯口进行联接,二是通过PLC的输入输出端子与操作站上的开关量板和A/D板进行联接。其中,PLC通过通讯口传递给上位机的故障信号多达2个或2个以上时,上位机要通过编码进行识别,而通过PLC输出端子传递给上位机的故障信号,上位机要通过开关量板输入端子的地址来识别。PLC输入端子可接受来自上位机的控制信号或故障信号。网络中的PLC和操作站在故障诊断系统中各自扮演着不同的角色。
通常情况下,故障诊断过程中复杂的逻辑判断、开关量故障信号的检测以及在严重故障状态下对设备进行的保护可交给PLC完成,而复杂的数值计算和人机交互可在上位机上完成。
5应用效果
整个车间自动化系统为二级控制系统,即设备控制级和信息管理级,设备控制级即一级系统为RMC200轧线控制系统,采用ABBMasterPiece系统,由10套ABBMasterPiece200/1过程站、3套MasterPiece90过程站、和3台AdvantStation500系列操作站、1台VT340监控站及2台MasterAid220编程器构成。各过程站之间的网络通讯采用MasterBus300(简称MB300),通过加热炉的过程站与二级信息管理级进行通讯。每一个MP200/1过程站通过一个DSCS140通讯板连接到MB300网络上,通过MB300网络进行数据交换,通讯板上可以设定地址开关,据此来确定该节点在网络上的位置。对于MP200/1与打捆机MP90的通讯,通过RMC7系统中的通讯板DSCS131连接至MODEM,打捆机上也分别装一MODEM和通讯板DSCS131,由MODEM来实现远程通讯。在加热炉RMC1的MP200/1系统中,通过DSCS150板与二级计算机系统IBMNetifinity5000服务器通讯,二者通过GCOM网络进行数据交换。下面以RMC2为例,简介实现轧钢生产设备故障诊断的智能化。
RMC2实际上包括三套PLC:RMC2、RMC52、RMC62,RMC2主要完成的控制功能有:轧制程序表的设定及存储、炉前装料设备控制(包括热送和装冷坯两种情况)、炉前钢坯测长与称重、加热炉出口设备控制、粗轧机主传动控制、粗轧机微张力控制、6#剪子控制;RMC52主要完成的控制功能有:中轧机控制(包括速度级联、速度给定、跟踪)、轧线模拟轧钢测试、中轧机组的活套扫描器控制;RMC62主要完成的控制功能有:精轧机控制(包括速度级联、速度给定、跟踪)、精轧机组的活套扫描器控制。RMC2、RMC52、RMC62三者既需立完成分配给自己的控制功能,又环环相扣,互相联锁制约着,若中轧机组的活套扫描器控制中有差错,轧钢控制系统无法正常运行,6#剪子立即碎断,防止轧线堆钢,同时,加热炉停止出钢,直至故障解除。所设计的故障诊断系统能完成以下功能:
(1)测试过程开始前,运行故障诊断系统,检查轧钢生产控制系统是否处于良好状态。对于开关量,这个过程是上位机通过通讯口读取PLC输入位的状态值并与其正常状态值相比较的过程;对于模拟量,这个过程可用读取模拟量起动的开关位的状态值作为判断的根据,也可将从其它站读取的模拟量与其相应的限值相比较的结果作为判断的根据。若发现测控系统有故障,应及时处理(上位机显示屏给出具体故障的部位报警)。只有当诊断结果为良好状态时,才能进行的轧钢性能测试;
(2)如果测试结果发现不合格的设备,应重新运行故障诊断系统。
(3)如果测试过程当中,测控系统出现严重故障,则PLC通过通讯口或上位机输入输出板传递故障信号,使测控系统退出测试过程,屏幕给出故障诊断的和排除故障的建议。
6结束语
PLC可为轧钢生产设备的故障诊断提供强有力的技术支持。在进行故障诊断系统的设计时,根据诊断系统的功能要求,选用适当的PLC,可丰富和完善诊断系统的功能。随着PLC新产品的研制成功,它在故障诊断领域将有广阔的应用前景。
产品推荐