产品规格模块式包装说明全新
西门子模块6ES7223-1BM22-0XA8参数说明
PLC内部的普通计数器的计数方式是PLC在进行输入扫描而得到的信号变化时计一次数。但是PLC在程序执行过程中,是不进行输入扫描的。也就是说,PLC扫描一次输入信号的状态后(语言应该是:输入刷新)进入程序执行过程,程序执行过程中输入再有变化,PLC就不会知道了,程序也不会做出影响。这种状态,我们用普通计数器对高速输入脉冲就无能为力了。PLC为什么要设有高速计数器功能呢?这要从PLC的扫描周期来理解。
你想打电话告诉来救他(由于有醉汉在的条件,让你有一个打电话的输出动作),而家人说,你还是再看看醉汉现在的状态再说吧。如你回家后关上门对家人讲,你在外面看到有一个人醉汉倒在大街上(关门前看到的就是输入扫描)。于是你放下电话(没有输出)开门出去再看一次(由于家人这个中间继电器的参预,你把程序直接跳转到结束,再一次输入扫描),回到家后又关门告诉家人醉汉现在的状况。家人还要坚持让你再出门看一次,你不耐烦了,说“我现在就认为他还躺在那,等我打完电话再出去看吧”(屏蔽中间继电器的参预,继续执行程序),电话打完了(程序执行结束),你又一次打开门出去看,醉汉已经走了。没办法,你还得回来打电话告诉不用来了(又一次程序执行结束)。然后你又出门了,看到醉汉又躺在了老地方,气死你了。于是你就想在门外安装一个视频头接到层里的一个显示器上随时观察醉汉的状态。来控制你是否打电话。(我说话罗嗦吧,谁让我先声明是家常聊天方式呢。)
高速计数器属于硬件计数器,其计数方式与程序的扫描是没的.实时接受外部脉冲信号的变化而计数(当然它的响应也是有一定限制,FX的是50kHZ).FX系列PLC内置高速计数器按其编号分别分配给X0---X7,X0---X7不可重复使用.下面以分配给输入X0的高速计数器为例写一个简单的程序.
分配给X0的高速计数器有:C235,C241,C244,C246,C247,C249,C251,C252,C254(每个高速计数器计数方式各不相同,这里暂不叙述.看附表自己理解.)如果我们使用C235计数器,其他的计数器就不可以再使用了.
LD M0
OUT C235 K10000
LD C235
OUT Y0
LD M1
RST C235
END
当M0处于断开状态时,C235不得电所以不能开始计数,当M0闭合时高速C235计数器一直是处于得电等待计数状态.说了,C235是分配给X0的高速计数器.那么它就是接收X0的输入脉冲信号,每当X0有一个上升沿到来时,C235就计数一次.当计数到10000时,C235的常开触点闭合使Y0得电.当M1闭合时C235复位,其常开触点断开.
要注意的是:
1、高速计数器计数不受扫描周期的影响,但他的触点的闭合状态还得程序扫描到LD C235时Y0才动作。如果想让高速计数器到达计数值立即进行输出处理,得用HSCS指令。
2、只有C235的当前值由9999变化到10000计数器输出点才动作。人为改变C235的值等于10000,其触点是不动作的
一、前言
世界上台可编程序控制器产生于 1969 年, 是由当时美国数字设备公司(DEC)为美国通用汽车公司(GM)研制开发并成功应用于汽车生产线上, 被人们称为可编程序逻辑控制器( Programmable LogicController) , 简称 PLC。在 70 年代, 随着电子及计算机技术的发展, 出现了微处理器和微计算机, 并被应用于 PLC中, 使其具备了逻辑控制、 运算、 数据分析、 处理以及传输等功能。电气制造商协会 NEMA(National Electrical Manufacturers Association) 于 1980 年正式命名其为可编程序控制器( Programmable Controller) , 简称 PC。为与个人计算机( Personal Computer)相区别, 同时也使用其早期名称 PLC。 电工技术 IEC ( International Electrotechnical Commission) 分别于1982 年 11 月和 1985 年 1 月颁布了 PLC的稿和二稿标准。以后 PLC开始向小型化、 高速度、 、 高性方面发展, 并形成多
种系列产品, 编程语言也不断丰富, 使其在 80 年代工业控制领域中占据着主导地位。可编程序控制器是以微处理器为基础, 综合了计算机技术与自动控制技术为一体的工业控制产品, 是在硬接线逻辑控制技术和计算机技术的基础上发展起来的。通常把 PLC认为是由等效的继电器、 定时器、 计数器等元件组成的装置。
二、 可编程序控制器简介
(1)PLC组成: 处理单元(CPU)、 存储器、 输入/输出单元( I/O单元)、 电源、 编程器等;
(2)PLC分类: 按照结构形成分为整体式和模块式; 按照输入/输出( I/O)点数分为小、 中和大型;
(3)PLC特点: 性高, 通用性强, 编程简单(常用编程语言有梯形图、 语句表、 逻符号图、 顺序功能图和语言等) , 体积小, 安装维护简便等;
(4)PLC工作方式: PLC是采用循环扫描的工作方式, 即每一次状态变化需一个扫描周期。PLC循环扫描时间一般为几毫秒至几十毫秒。 整个过程分为内部处理、 通信、 输入处理、 执行程序、 输出处理几部分;
(5)PLC发展趋势: 向高速度、 大容量、 多种类发展; 丰富编程语言,开发用户友好界面; 开发智能模块; 加强联网通讯能力; 予留现场总线接口(现已有产品应用, 如: SIEMENS SIMATIC S7- 400) ; 拥有智能诊断等功能; 保护功能加强, 有效保护用户信息, 防止非法复制、 修改;对现场环境的适应能力强。
三、可编程序控制器选型
在 PLC实际应用中, 是以其为控制组成电气控制系, 实现对生产、 工业过程的控制。方案设计步骤:要了解被控制对象的机构、 运行过程等, 并明确动作逻辑关系:
(1)根据系统功能要求(包括输入、 输出信号数量的多少、 性质、 参数; 有无特殊功能要求; 是否联网运行等)选择 PLC 型号及各种附加配置, 并有规则、 有目的的分配输入、 输出点; (2)根据控制及流程要求, 对应输入、 输出开发相应应用程序; 同时连接 PLC与外部设备连线;
(3)将编制完成的程序写入 PLC中, 模拟工况运行, 进行调试及修改; 在模拟调试成功后, 接入现场实际控制系统中进行再次调试, 直至通过为止。
四、 应用体会
(1)选型:在 PLC选型是时主要是根据所需功能和容量进行选择,并考虑维护的方便性, 备件的通用性, 是否易于扩展, 有无特殊功能要求等。PLC输入/输出点确定: I/O点数选择时要留出适当余量;PLC存储容量: 系统有模拟量信号存在或进行大量数据处理时容量应选择大一些;存储维持时间: 一般存储约保持 1~3 年(与使用次数有关)。若要长期或掉电保持应选用 EEPROM存储(不需备用电源) , 也可选外用存储卡盒;PLC的扩展: 可通过增加扩展模块、 扩展单元与主单元连接的方式。 扩展模块有输入单元、 输出单元、 输入/输出一体单元。 扩展部分出主单元驱动能力时应选用带电源的扩展模块或另外加电源模块给以支持;PLC 的联网: PLC 的联网方式分为 PLC 与计算机联网和 PLC之间相互联网两种。与计算机联网可通过 RS232C 接口直接连接、RS422+RS232C/422 转换适配器连接、 调制解调通讯连接等方式; 一台计算机与多台 PLC联网, 可通过采用通讯处理器、 网络适配器等方式进行连接, 连接介质为双绞线或光缆; PLC之间互联时可通过通讯电缆直接连接、 通讯板卡或模块+数据线连接等方式。
(2)充分合理利用软、 硬件资源:不参与控制循环或在循环前已经投入的指令可不接入 PLC;多重指令控制一个任务时, 可先在 PLC外部将它们并联后再接入一个输入点;尽量利用 PLC内部功能软元件, 充分调用中间状态, 使程序具有完整连贯性, 易于开发。同时也减少硬件投入, 降低了成本;条件允许的情况下立每一路输出, 便于控制和检查, 也保护其它输出回路; 当一个输出点出现故障时只会导致相应输出回路失控;输出若为正/反向控制的负载, 不仅要从 PLC内部程序上联锁,并且要在 PLC外部采取措施, 防止负载在两方向动作;PLC紧急停止应使用外部开关切断, 以确保。
(3)使用注意事项不要将交流电源线接到输入端子上, 以免烧坏 PLC;接地端子应立接地, 不与其它设备接地端串联, 接地线裁面不小于 2mm2;辅助电源功率较小, 只能带动小功率的设备(光电传感器等) ;一般 PLC均有一定数量的占有点数 (即空地址接线端子) , 不要将线接上;输出有继电器型, 晶体管型(高速输出时宜选用) , 输出可直接带轻负载( LED指示灯等) ;PLC输出电路中没有保护, 因此应在外部电路中串联使用熔断器等保护装置, 防止负载短路造成损坏 PLC;输入、 输出信号线尽量分开走线, 不要与动力线在同一管路内或捆扎在一起, 以免出现干扰信号, 产生误动作; 信号传输线采用屏蔽线, 并且将屏蔽线接地; 为保证信号, 输入、 输出线一般控制在 20米以内; 扩展电缆易受噪声电干扰, 应远离动力线、 高压设备等。输入/断开的时间要大于 PLC扫描时间;PLC存在 I/O响应延迟问题, 尤其在快速响应设备中应加以注意。
(4)工作环境PLC虽然适合工业现场, 使用中也应注意尽量避免直接震动和冲击、 阳光直射、 油雾、 雨淋等; 不要在有腐蚀性气体、 灰尘过多、 发热体附近应用; 避免导电性杂物进入控制器。
一般各型PLC(以下以无锡华光电子工业有限公司生产的SR系列PLC,做为描述样板,其余各型PLC大同小异)均设计成长期不间断的工作制。但是,偶然有的地方也需要对动作进行修改,找到这个场所并修改它们是很重要的。修改发生在PLC以外的 动作需要许多时间。
查找故障的设备
SR PLC的指示灯及机内设备,有益于对PLC整个控制系统查找故障。编程器是主要的诊断工具,他能方便地插到PLC上面。在编程器上可以观察整个控制系统的状态,当您去查找PLC为的控制系统的故障时,作为一个习惯,您应带一个编程器。
基本的查找故障顺序
提出下列问题,并根据发现的合理动作逐个否定。一步一步地换SR中的各种模块,直到故障全部排除。所有主要的修正动作能通过换模块来完成。 除了一把螺丝和一个万用电表外,并不需要特殊的工具,不需要示波器,精密电压表或特殊的测试程序。
1、PWR(电源)灯亮否?如果不亮,在采用交流电源的框架的电压输入端(98-162VAC或195-252VAC)检查电源电压;对于需要直流电压的框架, 测量+24VDC和0VDC端之间的直流电压,如果不是合适的AC或DC电源,则问题发生在SR PLC之外。如AC或DC电源电压正常,但PWR灯不亮,检查保险丝, 如必要的话,就换CPU框架。
2、PWR(电源)灯亮否?如果亮,检查显示出错的代码,对照出错代码表的代码定义,做相应的修正。
3、RUN(运行)灯亮否?如果不亮,检查编程器是不是处于PRG或LOAD位置,或者是不是程序出错。如RUN灯不亮,而编程器并没插上,或者编程器处于RUN方式 且没有显示出错的代码,则需要换CPU模块。
4、BATT(电池)灯亮否?如果亮,则需要换锂电池。由于BATT灯只是报警信号,即使电池电压过低,程序也可能尚没改变。换电池以后, 检查程序或让PLC试运行。如果程序已有错,在完成系统编程初始化后,将录在磁带上的程序重新装入PLC。
5、在多框架系统中,如果CPU是工作的,可用RUN`继电器来检查其它几个电源的工作。如果RUN继电器未闭合(高阻态),按上面讲的步检查AC或DC电源如AC 或DC电源正常而继电器是断开的,则需要换框架。
一般查找故障步骤
其他步骤于用户的逻辑知识有关。下面的一些步骤,实际上只是较普通的,对于您遇到的特定的应用问题,尚修改或调整。查找故障的工具就是 您的感觉和经验。,插上编程器,并将开关打到RUN位置,然后按下列步骤进行。
1、如果PLC停止在某些输出被激励的地方,一般是处于中间状态,则查找引起下一步操作发生的信号(输入,定时器,线川,鼓轮控制器等)。 编程器会显示那个信号的ON/OFF状态。
2、如果输入信号,将编程器显示的状态与输入模块的LED指示作比较,结果不一致,则换输入模块。入发现在扩展框架上有多个模块要换, 那么,在您换模块之前,应先检查I/O扩展电缆和它的连接情况。
3、如果输入状态与输入模块的LED指示指示一致,就要比较一下发光二管与输入装置(按钮、限位开关等)的状态。入二者不同,测量一下输入 模块,如发现有问题,需要换I/O装置,现场接线或电源;否则,要换输入模块。
4、如信号是线川,没有输出或输出与线川的状态不同,就得用编程器检查输出的驱动逻辑,并检查程序清单。检查应按从有到左进行, 找出个不接通的触点,如没有通的那个是输入,就按二和三步检查该输入点,如是线川,就按四步和五步检查。要确认使主控继电器步影响逻辑操作。
5、如果信号是定时器,而且停在小于999.9的非零值上,则要换CPU模块。
6、如果该信号控制一个计数器,检查控制复位的逻辑,然后是计数器信号。按上述2到5部进行。
组件的换,下面是换SR-211PC系统的步骤
一、换框架
1、切断AC电源 ;如装有编程器,拔掉编程器 。
2、从框架右端的接线端板上,拔下塑料盖板,拆去电源接线。
3、拔掉所有的I/O模块。如果原先在安装时有多个工作回路的话,不要搞乱IU/O的接线,并记下每个模块在框架中的位置,以便重新插上时不至于搞错。
4、如果CPU框架,拔除CPU组件和模块。将它放在的地方,以便以后重新安装。
5、卸去底部的二个固定框架的螺丝,松开上部二个螺丝,但不用拆掉。
6、将框架向上推移一下,然后把框架向下拉出来放在旁边。
7、将新的框架 从部螺丝上套进去,
8、装上底部螺丝,将四个螺丝都拧紧。
9、插入I/O模块,注意位置要与拆下时一致。
如果模块插错位置,将会引起控制系统危险的或错误的操作,但不会损坏模块。
10、插入卸下的CPU和模块。
11、在框架右边的接线端上重新接好电源接线,再盖上电源接线端的塑料盖。
12、检查一下电源接线是否正确,然后再通上电源。仔细地检查整个控制系统的工作,确保所有的I/O模块位置正确,程序没有变化。
二、CPU模块的换
1、切断电源,如插有编程器的话,把编程器拔掉。
2、向中间挤压CPU模块面板的上下紧固扣,使它们脱出卡口。
3、把模快从槽中垂直拔出。
4、如果CPU上装着EPROM存储器,把EPROM拔下,装在新的CPU上。
5、将印刷线路板对准底部导槽。将新的CPU模块插入底部导槽。
6、轻微的晃动CPU模块,使CPU模块对准部导槽。
7、把CPU模块插进框架,直到二个弹性锁扣扣进卡口。
8、重新插上编程器,并通电。
9、在对系统编程初始化后,把录在磁带上的程序重新装入。检查一下整个系统的操作。
三、I/O模块的换
1、切断框架和I/O系统的电源。
2、卸下I/O模块接线端上塑料盖。拆下有故障模块的现场接线。
3、拆去I/O接线端的现场接线或卸下可拆卸式接线插座,这要视模块的类型而定。给每根线贴上标签或记下安装连线的标记,以便于将来重新连接。
4、向中间挤压I/O模块的上下弹性锁扣,使它们脱出卡口。
5、垂直向上拔出I/O模块。
概述
尽管PLC(可编程序控制器)自身已具备较好的抗干扰能力,但在PLC控制系统的工程设计、应用和维护过程中,系统抗干扰能力仍然是系统运行的关键。笔者在多年教学、科研和生产实践中常遇到PLC因干扰而不能正常工作的情形。因自动化系统中所使用的各种类型PLC大多处在强电电路和强电设备所形成的恶劣电磁环境中,要提高PLC控制系统性,一方面要求PLC生产厂家提高设备的抗干扰能力;另一方面,要求在工程设计、安装施工和使用维护中高度重视,多方配合才能解决问题,有效地增强系统的抗干扰能力。
1干扰源分析
1.1干扰源及其一般分类
对PLC系统而言,常采用共模干扰和差模干扰的分类方法。共模干扰主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压迭加所形成。共模电压有时较大,特别是采用隔离性能差的配电器供电时,变送器输出信号的共模电压普遍较高,有的可高达130V以上。共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏,这就是一些系统I/O模件损坏率较高的主要原因。这种共模干扰可为直流,亦可为交流。差模干扰主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种干扰直接叠加在信号上,直接影响测量与控制精度。此外,按噪声产生的原因,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质,分为持续噪声、偶发噪声等。
1.2PLC控制系统干扰的主要来源
(1)来自空间的辐射干扰。空间的辐射电磁场(EMI),主要由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生,通常称为辐射干扰。其分布为复杂。其影响主要通过两条路径:一是直接对PLC内部的辐射,由电路感应产生干扰;二是对PLC通信网络的辐射,由通信线路的感应引入干扰。辐射干扰与现场设备布置及设备所产生的电磁场大小特别是频率有关。
(2)来自电源的干扰。因电源引入的干扰造成PLC控制系统故障的情况很多,换隔离性能好的PLC电源,才能解决问题。PLC系统的正常供电电源均由电网供电。由于电网覆盖范围广,它将受到所有空间电磁干扰而在线路上感应电压和电路。尤其是电网内部的变化,如开关操作浪涌、大型电力设备起停、交直流传动装置引起的谐波、电网短路暂态冲击等,都通过输电线路传到电源原边。PLC电源通常采用隔离电源,但因其结构及制造工艺使其隔离性并不理想。
(3)来自信号线引入的干扰。与PLC控制系统连接的各类信号传输线,除了传输有效的各类信息外,总会有外部干扰信号侵入。此干扰主要有两种途径:一是通过变送器供电电源或共用信号仪表的供电电源串入的电网干扰,这往往被忽视;二是信号线受空间电磁辐射感应的干扰,即信号线上的外部感应干扰,这是很严重的。由信号引入干扰会引起I/O信号工作异常,大大降低测量精度,严重时将引起元器件损伤。对于隔离性能差的系统,还将导致信号间互相干扰,引起共地系统总线回流,造成逻辑数据变化、误动和死机。PLC控制系统因信号引入干扰造成I/O模件损坏相当严重,由此引起系统故障的情况也很多。
(4)来自接地系统混乱的干扰。PLC控制系统正确的接地,是为了抑制电磁干扰的影响,又能抑制设备向外发出干扰;而错误的接地,反而会引入严重的干扰信号,使PLC系统无法正常工作。PLC控制系统的地线包括系统地、屏蔽地、交流地和保护地等。这样会引起各个接地点电位分布不均,不同接地点间存在地电位差,引起地环路电流,影响系统正常工作。例如电缆屏蔽层一点接地,如果电缆屏蔽层两端A、B都接地,就存在地电位差,有电流流过屏蔽层,当发生异常情况时,地线电流将大。
屏蔽层、接地线和大地也有可能构成闭合环路,在变化磁场的作用下,屏蔽层内会出现感应电流,通过屏蔽层与芯线之间的耦合干扰信号回路。若系统地与其它接地处理混乱,所产生的地环流就可能在地线上产生电位分布,影响PLC内逻辑电路和模拟电路的正常工作。PLC工作的逻辑电压干扰容限较低,逻辑地电位的分布干扰容易影响PLC的逻辑运算和数据存贮,造成数据混乱、程序跑飞或死机。模拟地电位的分布将导致测量精度下降,引起信号测控失真和误动作。
(5)来自PLC系统内部的干扰。主要由系统内部元器件及电路间的相互电磁辐射产生,如逻辑电路相互辐射及其对模拟电路的影响,模拟地与逻辑地的相互影响及元器件间的相互不匹配使用等。要选择具有较多应用实绩或经过考验的系统。
2抗干扰设计和措施
2.1选择抗干扰性能好的设备
选择设备时,要选择有较高抗干扰能力的产品,包括电磁兼容性(EMC),尤其是选择抗外部干扰能力强的产品,如采用浮地技术、隔离性能好的PLC系统;其次还应了解生产厂给出的抗干扰指标,如共模拟制比、差模拟制比、耐压能力、允许在多大电场强度和多高频率的磁场强度环境中工作;另外还要调查其在类似工作中的应用实绩。在选择国外进口产品时要注意电网制式。由于我国电网内阻大,零点电位漂移大,地电位变化大,工业企业现场的电磁干扰至少要比欧美地区高4倍以上,对系统抗干扰性能要求高。因此在采用国外产品时,需按我国的标准(GB/T13926)合理选择。
2.2综合抗干扰设计
主要考虑来自系统外部的几种干扰源并采取相应抑制措施。主要包括:对PLC系统及外引线进行屏蔽以防空间辐射电磁干扰;对外引线进行隔离、滤波,特别是动力电缆,要分层布置,以防通过外引线引入传导电磁干扰;正确设计接地点和接地装置,完善接地系统。另外还利用软件手段,进一步提高系统的性。
2.3电源的选择
在PLC控制系统中,电源占有重要的地位。主要是变送器供电的电源和PLC系统有直接电气连接的仪表供电电源引起的干扰,并没有受到足够的重视,虽然采取了一定的隔离措施,但普遍还不够。主要是使用的隔离变压器分布参数大,抑制干扰能力差,经电源耦合而串入共模干扰、差模干扰。所以,对于变送器和共用信号仪表供电应选择分布电容小、抑制带大(如采用多次隔离和屏蔽及漏感技术)的配电器,以减少PLC系统的干扰。
2.4电缆的选择和布置
为了减少动力电缆辐射电磁干扰,尤其是变频装置馈电电缆,不同类型的信号分别由不同电缆传输,信号电缆应按传输信号种类分层布置,严禁用同一电缆的不同导线同时传送动力电源和信号,避免信号线与动力电缆靠行布置,以减少电磁干扰。
2.5滤波及软件抗干扰措施
信号在接入PLC前,在信号线与地间并接电容,以减少共模干扰;在信号两间加装滤波器可减少差模干扰。此外,在PLC控制系统的软件设计和组态时,还应在软件方面进行抗干扰处理,进一步提高系统的性。常用的一些措施:数字滤波和工频整形采样,可有效周期性干扰;定时校正参考点电位,并采用动态零点,可有效防止电位漂移;采用信息冗余技术,设计相应的软件标志位;采用间接跳转,设置软件陷阱等,以提高软件结构性。
2.6完善接地系统
系统接地方式有浮地方式、直接接地方式和电容接地三种方式。对PLC控制系统而言,它属高速低电平控制装置,应采用直接接地方式。由于信号电缆分布电容和输入装置滤波等的影响,装置之间的信号交换频率一般都1MHz,所以PLC控制系统接地线采用一点接地和串联一点接地方式。集中布置的PLC系统适于并联一点接地方式,各装置的柜体接地点以单的接地线引向接地。如果装置间距较大,应采用串联一点接地方式。用一根大截面铜母线(或绝缘电缆)连接各装置的柜体接地点,然后将接地母线直接连接接地。接地线采用截面大于22mm2的铜导线,总母线使用截面大于60mm2的铜排。接地的接地电阻小于2Ω,接地埋在距建筑物10~15m远处,而且PLC系统接地点与强电设备接地点相距10m以上。信号源接地时,屏蔽层应在信号侧接地;不接地时,应在PLC侧接地;信号线中间有接头时,屏蔽层应牢固连接并进行绝缘处理,一定要避免多点接地;多个测点信号的屏蔽双绞线与多芯对绞总屏电缆连接时,各屏蔽层应相互连接好,并经绝缘处理,选择适当的接地处单点接地。
综上可见,PLC控制系统中的干扰是个十分复杂的问题,在设计中应综合考虑各方面的因素,合理有效地抑制抗干扰,对某些干扰还需作具体分析,采取对症的方法,才能使PLC控制系统正常工作
http://zhangqueena.b2b168.com