• 西门子6ES7223-1PH22-0XA8销售
  • 西门子6ES7223-1PH22-0XA8销售
  • 西门子6ES7223-1PH22-0XA8销售

产品描述

产品规格模块式包装说明全新

西门子6ES7223-1PH22-0XA8销售

摘要:
DCS系统的接地,是保证电厂DCS,运行的要条件。我根据对一些电厂的系统设计、现场经验,对DCS系统的接地,进行了探讨和简要介绍。


前 言
随着电力工业的发展和热工自动化水平的提高,分散控制系统(DCS)已在国内各电厂中得到广泛应用,这对保证电厂、经济和文明运行起到了十分重要的作用,并了良好的效果。
DCS合理、的系统接地,是DCS 系统非常重要的内容。为了保证DCS 系统的监测控制精度和、运行,对系统接地方式、接地要求、信号屏蔽、接地线截面选择、接地设计、接地箱布置等方面,进行认真设计和统筹考虑。本文根据DCS系统的设计规范要求,对DCS系统接地进行讨论和简要的介绍,以供大家在DCS系统设计、安装、维护中参考。

1、DCS系统接地的基本要求
DCS系统接地是为了保证当进入DCS系统的信号、供电电源或DCS系统设备本身出现问题时,有效的接地系统能承受过载电流并可以将过载电流导入大地。接地系统能够为DCS提供屏蔽层,电子噪声干扰,并为整个控制系统提供公共信号参考点(即参考零电位)。当接地系统发生问题时(接地电阻过大,多点接地,接地线断线或接地线与高电压、大电流设备相接触等),会造成人员的触电伤害及设备的损坏,据了解,有些电厂DCS系统经常“死机” (或不明原因的“死机”),大多是因为接地系统不良或存在问题所引起的。 因此,完善、、正确的接地,是DCS 系统能够、和良好运行的关键。
1.1DCS接地分类
在一般情况下,DCS控制系统需要两种接地:保护地和工作地(逻辑地、屏蔽地等)。对于装有栅防爆措施的系统如化工行业所用的系统,还要求有本安地。
1.1.1保护地(CG,Cabinet Grounding) 是为了防止设备外壳的静电荷积累、避免造成人身伤害而采取的保护措施。DCS系统所有的操作员机柜、现场控制站机柜、打印机、端子柜等均应接保护地。保护地应接至厂区电气接地网,接地电阻小于4Ω。
1.1.2逻辑地:也叫机器逻辑地、主机电源地,是计算机内部的逻辑电平负端公共地,也是+5V等的电源输出地。如CPU的正负5伏、正负12伏的负端。需要接入公共接地。
1.1.3屏蔽地(AG,Analog Grounding) 也叫模拟地,它可以把现场信号传输时所受到的干扰屏蔽掉,以提高信号精度。DCS系统中信号电缆的屏蔽层应做屏蔽接地。线缆屏蔽层一端接地,防止形成闭合回路干扰。铠装电缆的金属铠不应作为屏蔽保护接地,是铜丝网或镀铝屏蔽层接地。接入公共接地。
1.1.4本安地 应立设置接地系统,接地电阻≤4Ω。本安地的接地系统应保持立,与厂区电气地网或其它仪表系统接地网的距离应在5m以上。

1.2DCS系统接地方式 DCS系统一般接地方式
1.2.1利用电气接地网作为DCS接地网,即与电气接地网共地; 
1.2.2设DCS系统立的接地网;
1.2.3设DCS接地网,经接地线、再接至电气接地网;
由于三种接地方式与二种接地方式有较多相同处,过去,计算机或DCS系统曾经较多的采用过的接地网。但这种接地方式存在的缺点是:占地面积太大,投资高,电缆及接地网钢材耗量大,距厂房有相当的距离(因不易在厂房内找到合适的位置),管理、维护、测量及查找接地和接地线不方便,且效果不甚良好。根据实际运行表明,设置的DCS接地网是既困难又不的。如某电厂曾因接地问题,造成机组跳闸数十次。根据调查,不少电厂DCS后来改用电气接地网接地,了良好的效果。

1.3对公共接地(网)的要求
1.3.1当厂区电气接地网对地分布电阻≤4Ω时,可将厂区电气接地网当着DCS系统的公共接地(网)。
1.3.2当厂区电气接地网接地电阻较大或杂乱时,应立设置接地系统,即为DCS系统的公共接地(网)。
1.3.3没有本安地接入的公共接地(网)的对地分布电阻小于4欧姆;有本安地的小于1欧姆。接地总干线的线路阻抗小于0.1欧姆。
1.3.4接地周围15米内无避雷地的接入点,8米内无 30KW 以上的高低压用电设备外壳的接入点。当现场无法满足该条件时,防雷保护地通过避雷器/冲击波抑制器与公共接地的主干线相连。电焊地切勿与公共接地及其接地网搭接在一起,二者应距离10米以上。

2、DCS系统的接地原则
2.1DCS系统设置的接地装置
2.2.1操作台、打印台、服务器柜:设有保护地螺钉。
2.2.2继电器柜、UPS柜、配电柜:设有保护地螺钉。
2.2.3DCS的I/O机柜:设有屏蔽接地汇流排,保护地螺钉。系统地(+24V地)悬浮。
2.2.4仪表柜、手操盘台:设有屏蔽地接地汇流排,保护地螺钉。
2.2.5栅柜:设有屏蔽地接地汇流排,本安地接地汇流排,保护地螺钉。
2.2信号屏蔽及其接地
2.2.1根据有关技术规定要求,计算机或 DCS系统信号电缆的屏蔽层不得浮空,接地,其接地方式应符合下列规定: 
2.2.1.1当信号源浮空时,屏蔽层应在计算机侧接地;
2.2.1.2当信号源接地时,屏蔽层应在信号源侧接地;
2.2.1.3当放大器浮空时,屏蔽层的一端与屏蔽罩相连,另一端宜接共模地(当信号源接地时,接信号地。当信号源浮空时接现场地)。
2.2.1.4当屏蔽电缆途经接线盒分断或合并时,应在接线盒内将其两端电缆的屏蔽层连接。
2.2.2 DCS系统信号电缆的选择与敷设,应严格按照有关规定执行。屏蔽电缆的屏蔽层应按以上要求进行接地。为了提高DCS 系统的抗干扰能力,DCS系统开关量输入/输出信号,选用阻燃型对绞铜网屏蔽计算机电缆还是比较恰当的。

3、DCS系统的接地方法
3.1集中布置的DCS设备接地方法

3.2分散布置的DCS设备接地方法
分散布置DCS系统设备之间的连接一般是网络(通讯)线,例如:现场控制站分散到现场,而操作员站位于不同的控制室,分散直径在500米的范围内,各站点间使用多模光纤或5类双绞线或DP屏蔽双绞线等连接。
3.2.1使用光纤连接的站点:各站点内的接地方法同集中布置的DCS设备。
3.2.2使用5类双绞线或DP屏蔽双绞线连接的站点:
3.2.2.1控制室的各类地线先连接到公共连接板,公共连接板通过接地总干线与公共接地相连。从公共接地看过去,整个接地网络是一个星型结构。
3.2.2.2 使用5类双绞线或DP屏蔽双绞线两头通过网络浪涌保护设备(信号避雷器、通流量不小于5KA)与DCS的SWITCH、HUB、REPEAT、或其他网络设备相连。两边的站点有各自的公共接地,二者不必有金属连接,各站点的接地方法同集中布置的DCS设备。5类双绞线或DP屏蔽双绞线穿镀锌钢管或金属桥架敷设,钢管或桥架接地。当雷击,或者电气事故造成两边地电位差过大时,信号避雷器可以保护两边的设备。

3.3 DCS设备接地安装
3.3.1接地体:为钉入地下的良导体,由接地总干线传来的电流通过接地体导入大地。接地体与接地总干线之间采用铜焊,焊接后应做防腐处理。可用接地网干线把多个接地体连接成网,接地网应满足DCS系统接地电阻的要求。当接地网干线与接地体采用搭接焊时,其搭接长度为扁钢宽度的2倍或圆钢直径的6倍。图3-2为典型的多接地体安装图。

3.4 DCS系统接地降低土壤电阻率的方法
3.4.1改变接地体周围的土壤结构。在接地体周围的土壤2~3m范围内,掺入不容于水的、有良好吸水性的物质,如木炭、焦碳煤渣或矿渣等,该法可使土壤电阻率降低到原来的1/5~1/10。
3.4.2用、木炭降低土壤电阻率用、木炭分层夯实。木炭和细掺匀为一层,约10~15cm厚,再铺2~3cm的,共5~8层。铺好后打入接地体。此法可使电阻率降至原来的1/3~1/5。但日久会随流水流失,一般过两年就要一次。
3.4.3用长效化学降阻剂。用长效化学降阻剂方法可使土壤电阻率降至原来的40%。

3.5 DCS系统接地材料及要求
3.5.1接地体与接地网干线的材料要求
接地体和接地网干线所用钢材规格可按下表选用,若接地电阻满足不了要求时,也可选用铜材。如果接地体和接地网干线安装在腐蚀性较强的场所,应根据腐蚀的性质采取热镀锌、热镀锡等防腐措施或适当加大截面。 

3.5.2接地连线要求
DCS系统的保护地和屏蔽地连线应使用铜芯绝缘电线或电缆连接到厂区电气接地网或接地体上。小表列出各类接地电缆可选用的规格。当接地连线距离较长、DCS系统对接地电阻要求较高或接地干线分接的支线数量较多时,宜选用表中截面较大的电线电缆。

4、现场接地常用注意事项
4.1现场控制站:接地螺丝因机柜本体与底座间有胶皮形成绝缘,屏蔽地汇流排与底座间绝缘,现场控制站按规定做好接地处理。即分别接至现场控制站接地汇流排上。I/O柜的电源地与UPS的电源地接至同一个地,保证等电位。
4.2现场控制站:操作员站、工程师站、网络交换机、服务器主机、系统显示器等采用外壳接地或直接将电源地线连接至电气接地网。
4.3 I/O模件:模拟量模件的40端即直流24伏的负端接至逻辑地汇流排上,逻辑地汇流排接至屏蔽地,再接入总接地汇流排。
4.4.现场控制站的保护地应从机柜下方的接地螺钉接至接地分干线, 现场控制站的屏蔽地应从接地汇流排接至公共连接板。
4.5接地系统的电阻进行测试,以保证接地能满足控制系统制造商的要求。


一、 引言
低压变频器已经企业界的认可,正在走向大面积普及之路。高压变频器市场正在启动,前景十分好,以前这一产品依赖进口,近几年,随着人们对高压变频器的认识越来越深入,市场需求增加。 国内变频器生产商奋起直追,已涌现出几个。我公司是开始研制高压变频器较早的单位之一, 6000V级的高压变频器已有多台正在正常运转,通过了天津发配电及电控设备所和国家电控配电设备质量监督检验的检验,通过了由院士和国内组成的鉴定的鉴定,鉴定证书中高度评价了设备的性和性。在2002年年底我公司接到万伏变频器的订单,该变频器已于是2003年3月交付使用,现在运行良好。现把研制中的一些关键技术问题和解决办法奉献给读者,以期得到、用户和朋友的指教。
二 方案选择 
客户要求的主要技术指标是:10000V,355KW,额定电流为25.,负载为水泵。
高压变频器的制造远远落后于社会的需求,全世界都是这样。瓶颈在于功率器件耐压不够,这是制约高压变频器发展的主要因素。为此,科学家们提出了很多解决方案,例如,高-低-高方案、功率器件直接串联方案、三电平-多电平方案、功率单元串联方案等等。我公司生产的6000V变频器用的是功率单元串联方案,效果很好,10000V变频器仍然选这种方案,其理由是:
a、输出电平数多,因此输出波形特别好,能适合普通异步电动机,且不必降额使用。
b、所需IGBT数量大,但对耐压要求不高,功率器件不存在均压问题。
c、输入整流电路的脉冲数大,对电网污染小,功率因数高。
d、功率单元数量大,这是个大缺点,但结构一样,可以互换,这对生产、调试、留备用件等都来了很大方便。
e、技术已经掌握,已有成功经验,性。


三 系统原理
功率单元串联结构,如图1所示,以每相9单元为例。
    

功率单元为三相50Hz输入,通过交—直—交变换,得到SPWM单相输出的变频器,多个单元相串联后组成Y型结构。单元的三相输入由副边多重化隔离变压器供给,如图2所示。
(一) 电路结构
1、单元数和功率器件的选择
线电压10000V,相电压5773V,若每相由9个单元串联,每个单元的的输出为641.5V(有效值)。用户要求的额定容量小,终选用了西门子双单元IGBT模块为功率器件。

2、输入隔离变压器的设计
为绕制方便,采用18脉冲整流,输入电流谐波已能满足电磁兼容要求。变压器输入侧采用星形接法。输入变压器与功率单元的连接示意图如图2所示。
    

这种整流结构能够保证输入电流的谐波成份满足企业标准和IEEE519的规定和要求。当然相位组还可以多一些,例如采用30或36脉冲整流电路结构,不过那样就大大增加了变压器绕制工艺的难度。

3.功率单元主电路
功率单元主电路结构是典型的三相输入单相输出电路,如图3所示。
    

(1)由于电解电容上的交流成分和高频成分比较大,实际并有无感电容(图中未画),可以减少交流成分和高频成分,从而减少电解电容的负担,以提高电解电容的寿命。
(2) 单相输出有晶闸管旁路电路,正常工作时晶闸管不导通,当该单元发生故障时,晶闸管导通,该单元退出运行,其它单元还可继续工作,因而整机可以避免紧急停机。
    

在工作方式上,采用单臂(T1、T2)PWM调制,另一臂(T3、T4)上下管轮流导通,波形见图4,整体原理方案如图2所示,总体结构如图5所示。
    

(二)控制系统及其优化
87C196MC是变频器中常用的,在本设计中仍然选它为主控器件,每个单元配有51单片机作为辅机。单片机资源有限,设计中精打细算、注意优化。
1、 控制系统的电源
控制系统有一套立的电源子系统,其构成如图6所示:
    

220V市电经过整流、滤波、稳压得到一个稳定的直流电压,再由一个高频振荡器得到幅度稳定的高频信号,由一系列高频变压器及相应的整流、滤波送到各单元的控制及驱动电路。
控制系统电源立的好处是:
1)电源通过高频变压器给各单元供电,容易实现高压隔离。
2)主电路有故障时,控制系统供电依然正常,能保证IGBT开关次序不乱。
3)主电路不加电、不加载的情况下,可以对整机进行调试,此时各点波形与主电路加电、加载时一样,只是输出电压幅度小。这对设备调试、检修和操作人员的培训十分方便。
    

3、载波移相技术
采用功率单元串联实现高压变频器,控制方式一般有两种:
(1)堆波方式 
(2)载波移相技术
堆波方法控制,实现较简单,波形质量也比较好,功率器件开关次数少,开关损耗小,但它存在两个缺点:
(1)串联的各单元承担的功率不一致。
(2)变压器各付边绕组承担的功率不一致。
载波移相技术可以得到良好的输出波形,它克服了堆波方法的两个缺点,虽然功率器件开关次数较堆波方法多,但在整机中开关损耗并非矛盾,因此我们采用了这种控制方式。
将调制信号和载波信号的频率固定不变,调制信号的相位也固定,把单元1的载波相位取为基准,单元2、3、~8、9的载波相位依次后延1/9载波周期。载波频率等效提高了9倍,而在同一时刻只有一个单元有开关动作,9单元串联后dv/dt仍然同于一个单元的dv/dt,串联后总输出的基波成份相叠加,而各单元的谐波成分却相互抵消而变得很小,这是该项技术的大优点所在。
另外,这种控制方式,串联的各单元承担的功率都相等,隔离变压器的各付边绕组承担的功率也都相等,各个单元的结构与控制电路也都相同。

4、正弦波的阶梯化模型
9个单元的载波应该分别与同一调制信号相比较,那么9个PWM脉冲的宽度变化就精细的反映了调制信号的幅度变化,但这样就使采样数据量比一个单元的采样数据量扩大了9倍,使CPU(87C196MC)难于承受,重要的是输出端口不够用,这是解决的难题。在本设计中解决的办法是只让1个单元负责采样,而其它单元都使用这个采样值,这实际上是设:当个单元采样之后,2、3、~8、9单元应该采样的这段时间里,调制信号没有变化,正弦调制信号被模型化成了阶梯波信号,见图8。采用这种近似方法使载波移相 控制方便地实现了全数字化。
用两种角度来分析这种模型化的误差:
    

a)要求阶梯波与其原型正弦波面积相等。如图8所示。
前1/4周期,阶梯波的面积小于原正弦波。后1/4周期,阶梯波面积大于原正弦波,不难看出,增大部分正好等于减小部分,从整个半周来看,正弦波与其阶梯波面积相差甚微,由此可得出结论,模型化所带来的面积误差不大,只是阶梯波比原正弦波延迟了半个载波周期,A、B、C三相都延迟半个载波周期,三相输出的相位关系无任何变化。
b)从谐波的角度来分析。
误差不大的说法是一种平均的观点,阶梯波必然包含谐波成分,失真是肯定的。经过数学运算推导,按本设计中的参数计算,THD≈3.63% 。这就是正弦波模型化成阶梯波的附加失真。阶梯波的有效值与原正弦波相等,而阶梯波的基波分量与原正弦波非常相近,主谐波远基波。这就决定了这种波形适用于电机驱动,而不会产生转矩脉动。从后来样机实际运行的结果来看,证明了这一方案是合理的。

5 控制信号的传输
为了系统的性,防止大电压和大电流跳变对控制信号的干扰,控制信号采用光纤传输。各单元的控制信号是多通道并行传输,减少信号的中间处理环节。实用效果很好。

四 用户操作监控系统
面向用户的整个操作监控系统包括上位机(商用PC机)、下位机(工控机)、单片机,如图9所示。其中单片机给用户提供一个4位LED数码屏和一个12键的小键盘操作平台,可对变频器进行全部操作,包括参数设置和各种运行指令。工控机用触摸屏和通用键盘给用户提供操作平台。其功能齐全,包括参数设定、功能设定、运行操作、运行数据与打印、故障查询等等。上位机(商用PC机)放在总控室,可对多台变频器进行遥测、遥控。若只有一台变频器,上位机可省。
    

工控机功能强大,用文字叙述很费笔墨,这里仅示出一个主界面,见图10。由图看出其功能之齐全和操作的方便性。例如可查看或打印运行参数的历史,可查询故障原因等等。
    

五、运行情况及研制总结
对用户进行跟踪服务,用户反馈的信息是运行良好。对几台样机的研制工作,公司进行了认真的总结,我们的结论是:
1 原理正确,结构合理。
2 软件运行良好,功能基本齐全。
3 控制系统的电源有自己的特点,在主回路不加电、不加载(开路)的情况下,可为控制系统加电,这时各点波形与主回路加电、加载情况下的波形一样。因而,可在不加电、不加载的情况下调试系统、培训操作人员,也给现场安装、调试、维修带来方便。
4 采用正弦波的阶梯化模型的近似方法,使载波移相技术方便地实现了全数字化,使单片机的有限资源得到了充分发挥


扩频技术能够很好地满足FCC规范和EMI兼容性的要求,EMI兼容性的好坏在很大程度上依赖于测量技术的通带指标。扩频振荡器从根本上解决了峰值能量高度集中的问题,这些能量分布在噪声基底内,降低了系统对滤波和屏蔽的需求,同时也带来了其他一些好处。  
     的多媒体、音频、视频及无线系统在当今的汽车电子产品中所占的份额越来越大,设计人员不得不考虑分布在这些子系统敏感频段的射频(RF)能量。对于的无线装置,是否能够RF峰值能量直接决定了方案的有效性。  
     多年以来,无线通信产品利用“频率调节”技术避免电源开关噪声的影响,这种无线装置能够与供电电源进行通信,使电源按照指令改变其开关频率,将能量峰值搬移到调谐器输入频段以外。在现代汽车电子产品中,随着干扰源数量的增多,很难保证系统之间的协同工作,这种情况由于设备天线的多样化以及对新添子系统放置位置的限制变得为复杂。  
     扩频振荡器在数字音频、免提接口等系统中具有特的优势,这些系统一般采用编改善音频质量,编与蜂窝电话或其它信息处理终端之间通过数字接口连接,如果利用“抖动”(扩频)振荡器作为编的时钟源,能够在非情况下谐波噪声。这种技术在采用了开关电容编的多媒体系统中很常见。除了抑制谐波噪声外,SS振荡器能够将能量峰值降至噪声基底以内,在无线跳频网络中可减小落入信道内的干扰。  
     下一代汽车电子产品中,几乎所有的子系统都倾向于利用SS时钟技术改善系统性能,降低EMI。针对这种应用,Maxim/Dallas推出了全硅振荡器,这种振荡器能够启振,而且具有抗震性。其成本与陶瓷谐振器相比竞争力,振荡频率从几千赫兹到几十兆赫兹。  
     汽车电子产品的设计考虑有效控制EMI是电子工程师在产品设计中所面临的关键问题。数字系统时钟是产生EMI的重要“”,主要原因是:时钟一般在系统中具有频率,而且常常是周期性方波,时钟引线长度通常也是系统布线中长的。时钟信号的频谱包括基波和谐波,谐波成份的幅度随着频率的升高而降低。系统中的其它信号(位于数据或地址总线上的信号)按照与时钟同步的频率刷新,但数据刷新动作发生在不确定的时间间隔,彼此之间不相关。由此产生的噪声频谱占有较宽的频带,噪声幅度也远远时钟产生的噪声幅度。虽然这些信号产生的总噪声能量远远时钟噪声能量,但它对EMI测试的影响非常小。EMI测试关注的是频谱功率密度的幅度,而不是总辐射能量。  
     实际应用中可以通过滤波、屏蔽以及良好的PC板布局改善EMI指标。但是,增加滤波器和屏蔽会提高系统的成本,的线路板布局需要花费很长时间。解决EMI问题的另一途径是直接从噪声源(通常是时钟振荡器)入手,产生随时间改变的时钟频率可以很容易地降低基波和谐波幅度。时钟信号的能量是一定的,频率变化的时钟展宽了频谱,因而也降低了各谐波分量的能量。产生这种时钟的简单方法是用三角波调制一个压控振荡器(VCO),所得到的时钟频谱范围随着三角波幅度的增大而增大。实际应用中需合理选择三角波的重复周期,三角波频率较低时会通过电源向模拟子系统产生耦合噪声;如果选择频率过高三角波,则会干扰数字电路。  
     图1是基于上述考虑的时钟振荡器原理图,它用一个三角波控制VCO输出频谱的带宽,VCO的频率由DAC和可编程8位分频器控制,可以在260kHz至133MHz范围内设置频率。IC通过2线接口控制,控制字存储在芯片内部的EEPROM内,如果预先将频率设置在所希望的频点,该器件可以工作在单机模式,也可以在其空闲周期内新频率,这也是它在低功耗应用中的一个优势。  
    图2给出了普通晶振与扩频时钟振荡器的频谱对照图,通过设置三角波的幅度可以将频谱扩展4%,与晶体时钟振荡器相比峰值幅度降低近25dB。  
    利用扩频振荡器作为微处理器的时钟源时,须确认微处理器能够接受时钟占控比、上升/下降时间以及其他由于时钟源频率变化所造成的参数容差。当振荡器作为系统的参考时钟使用时(实时时钟或实时监测等),频率变化可能导致较大误差。  
    许多便携式消费类产品带有射频功能,如蜂窝电话,扩频技术对于这类产品中的开关电源非常有利。射频电路(特别是VCO)对于电源噪声非常敏感,但便携式产品为了延长电池的使用寿命使用开关电源,以提供的电压转换。开关电源具有与时钟振荡器相同的噪声频谱,而且,噪声可以直接耦合到射频电路,影响系统的性能指标。带有外同步功能的升压转换器(如MAX1703)可以用一个扩频时钟控制它的振荡频率,该方案与自激振荡升压转换器的噪声频谱(图3)相比能够改善系统性能(图4)。自激振荡升压转换器谐波在整个10MHz范围内都具有较大的能量,而扩频方案则将谐波分量的幅度降低到噪声基底以内。值得注意的是,由于总噪声能量是固定的,扩频后使噪声基底有所上升。  
    为时钟源加入抖动之前,需要考虑以下几个问题:需要采用何种“加抖”波形?所允许的大时钟偏移是多少?需要多大的抖动速率?限制抖动速率的因素是什么?以下就这些问题展开讨论。  
    “加抖”波形  
     为确保时钟信号能够被系统所接受,时钟抖动范围一般比较小(<10%)。这样,“加抖”过程与窄带FM调制非常类似。相应的调制理论给出了抖动波形与频谱结果之间的简单关系,即:时钟频率的“概率密度函数”与抖动时钟输出的频谱具有相同的形状,锯齿波是一种常见的“加抖”波形,每个加抖周期可以准确地进入每个频点两次。由于每个频点出现的时间比例相同,因此,概率密度函数在整个频率调节范围内随着频率的变化而保持一个常数,得到均匀概率的分布。这种抖动波形的频谱相同,频谱能量均匀地分布在一个较窄的频段,对于所允许的(Fmax-Fmin)频率范围来说,这种频谱分布是的,因为它在每个频点所得到的频谱能量是的。  
    这种频谱也可以利用伪随机频率抖动器获得,这种方式通常是产生一个长序列的频率,并以一定的间隔重复,每个频点在一个周期只出现一次,所得到的概率密度分布也是均匀的,与三角抖动器相同。这种方式通常用于其他领域。  
     频谱衰减  
     考察一个抖动时钟电路的好坏,主要是看窄带频谱中每个频点的能量相对于单音时钟能量降低了多少。以下观点有助于理解扩频频谱的能量:1、从单音到抖动时钟的转换不会改变时钟能量,只是加抖后单音时钟的能量被分布在一个较宽的频带内。2、周期性“加抖”时钟的频谱由以“加抖”频率(Fd)为间隔的谐波组成。下式将单音功率均分到整个抖动谐波频段:  
    VRMS(dB)=20log[sqrt({(F0*a)/Fd}*Vu2)] =10log[{(F0*a)/Fd}]+20log[Vu], 式中:F0是加抖之前的频率,a是相对于非抖动频率的抖动系数,Vu是抖动时钟频带内每个频谱的RMS电压。由此可以得到窄带频段内频谱能量的衰减为:  
    频谱衰减=10log[{(F0*a)/Fd}].  
    上述方程表明:在允许的抖动时钟带宽(a*F0)内产生的频谱谐波分量越多,频谱的能量就越低。作为一个例子,我们可以考察一下DS1086可编程时钟发生器的抖动结构,DS1086电路中,a=0.04,F0=100MHz,Fd=F0/2048,因此,DS1086的频谱衰减为19.1dB。  
    注意,增大抖动系数(a)可以达到与降低“加抖”速率相同的目的。另外,该等式既适用于三角波加抖,也适用于伪随机加抖,因为它们具有相同的分布。  
    抖动限制  
    实际应用中的一些因素会限制频谱能量的衰减量,,由于抖动改变了系统定时,存在频率不稳定性,据此,系统定义了对参数“a”的限制。产生抖动时钟的电路也会限制“加抖”的速率,带有锁相环或其它控制环路(如DS1086)的系统,“加抖”控制电压受控制环路带宽的限制。否则,抖动控制的分布函数将转变成高斯函数,所得到的频谱能量将主要集中在非抖动时钟频率附近。  
    三角波抖动时钟结构的主频在其抖动速率处,而伪随机抖动时钟结构要求频带抖动模板的速率,频率可以从小值跳到大值,而三角波模板中频率是连续递增的。环路带宽与抖动速率之间存在以下近似的关系:  
    环路带宽>3(三角形模板速率)  
    环路带宽>3(伪随机模板速率)  
    环路带宽固定时,三角波模板能够支持较高的抖动频率。因为抖动速率比干扰(以频率抖动形式出现)的窄带,对于相同的检测时间,三角波模板的抖动速率要比伪随机模板高一些。抖动检测时间直接影响了抖动速率,干扰信号的频带取决于具体应用,抖动频率没有一个确定的下限限制。对于抖动频率下限的另一考虑是抖动速率本身产生的带外噪声。对于线性系统,三角波抖动器不会在抖动速率处产生谐波。但是,如果非线性电路拾取了时钟信号,将会产生一些所不希望的频谱成分,低抖动频率被混频后产生位于有效工作频段的干扰信号。  
    扩频技术并不用于取代传统的EMI抑制技术,如:滤波、屏蔽和良好的线路板布局。该技术能够从根本上改善系统的性能,特别是对于子系统或外设易受峰值能量干扰的设备。在汽车产品或家庭设备中能够大大降低射频/TV干扰。良好的PCB布局是系统正常运行的基本,扩频时钟则有助于系统通过EMI认证,而且可以减少系统对滤波、屏蔽的需求,降低系统成本。



http://zhangqueena.b2b168.com

产品推荐