• 6ES7232-0HB22-0XA8技据
  • 6ES7232-0HB22-0XA8技据
  • 6ES7232-0HB22-0XA8技据

产品描述

产品规格模块式包装说明全新

6ES7232-0HB22-0XA8技据


PLC发展回顾

上世纪60年代后期,根据当时汽车市场需求和计算技术的发展,在美国麻萨诸塞州Bedford的Bedford Associates向美国汽车制造业提议开发一种Modular Digital Controller(MODICON)取代继电控制盘。其它一些公司也建议以计算机为基础的方案。其思想是采用软件编程方法代替继电控制的硬接线方式,并备有生产现场大量使用的输入传感器和输出执行器的接口,以便于进行大规模生产线的流程控制。这就是以后被称为Programmable Logic Controller的由来。MODICON 084是世界上种投入商业生产的PLC。70年代是PLC,在汽车工业获得大量应用,在其它产业部门也开始应用的时期。80年代是它走向成熟,采用微电子及微处理器技术;大量推广应用,并奠定其在工业控制中不可动摇地位的时期。在此阶段PLC销售始终以两位数百分点的速度增长,年的增长率过35%,后四年稳定发展,年增长率约12%。

90年代又开始了它的三个发展时期。随着PLC的标准IEC 61131的正式颁布,推动了PLC在技术上发动新的.

★ 在系统体系结构上,从传统的单机向多CPU和分布式及远程控制系统发展;

★ 在编程语言上,文本化和图形化的语言多样性,创造了具表达控制要求、文字处理、通信能力的编程环境。

★ 从应用范围和应用水平上,除了继续发展机械加工自动生产线的控制系统外,则是发展以PLC为基础的DCS系统、监控和数据采SA系统、柔制造系统(FMS)、联锁保护(ESD)系统、运动控制系统等,地产提高PLC的应用范围和水平。

进入90年代后期,由于用户对开放性的强烈要求和压力,由于信息技术的大力推动,PLC如果还停留在原有的而又封闭的系统概念上,它将坐以待毙。于是PLC进入了其发展的四阶段。其特征是:

★ 在保留PLC功能的前提下,采用面向现场总线网络的体系结构,采用开放的通信接口,如以太网、高速串口等。

★ 采用各种相关的工业标准和一系列的事实上的标准。值得注意的是PLC和DCS这些原来处于不同硬件平台的系统,正随着计算技术、通信技术和编程技术的发展,趋向于建立同一硬件平台,运用同一个操作系统、同一个编程系统,执行不同的DCS和PLC功能。这就是真正意义上的EIC三电一体化。或者说DCS和PLC的形态将会变化,而它们的功能依然存在。其中的关键技术应该是嵌入式PC系统及支持现场总线的I/O (硬件) ,以及以IEC 61161-3为基础的编程系统及强实时(hard real-time)操作系统。

PLC在中国的发展

在中国,大约从1974、75年在北京和上海开始开发采用位片式微处理芯片的可编程顺序控制器,并有所应用。但一直未能形成批量生产。在刚起步的1979年,在当时的机械部仪表局的推动下,开始从美国MODICON引进起584的PLC,并在电站的辅机如输煤、除灰除渣、水处理系统以及水泥厂等控制系统中成功应用,从而大大推动了PLC在我国工业的大规模运用。遗憾的是,花了很大一笔外汇的这个项目并不曾形成良性的有后续的发展。

自1985年开始,小型PLC是日本三菱电机公司的MELSEC-F,通过非渠道进入中国市场。不到三、四年时间,小型PLC就形成了大面积的推广应用局面。1990年以后,Siemens、Allen Bradley以及其它开始大举进入中国市场,占据中、大型的PLC的较大份额。1995年后形成了大型PLC以欧美为主、中型PLC欧美和日本平分秋色、小型PLC则以日本为主、Siemens也步步紧逼的格局。至今没有很大改变。

由上简要回顾可知, PLC在中国已经形成了规模的应用市场,但并未建立批量生产、有持续开发发展能力的PLC制造业。

应指出的是:

★ 在国内,PLC的应用水平还是不低的,自主设计、系统集成和现场投运的能力,可以说与主流水平同步;

★ PLC的应用领域也很广泛,覆盖冶金、电力、化工、石油化工、机械、轻工、电子、电工、建材水泥等工业,以及现代农业机械和其它应用。近年来环保工业也有广泛应用,发展势头很猛。

★ 在国内有一支庞大的PLC销售、服务、应用、系统集成队伍,遍布除西藏外的全国各地。有充足的理由说:PLC在中国已成为工业控制的一种适用技术。因此,PLC、软PLC以及IEC 61131-3的发展,无可争辩地成了十分令人关注的事情。

IEC 61131标准在中国

1992年以后,可编程序控制器标准IEC 61131的各个部分陆续公布施行。中国的工业过程测量和控制标准化按与IEC标准等效的原则,组织翻译出版工作。于1995年12月29日以GB/T 15969.1,15969.2,15969.3,15969.4 颁布了PLC的。该标准只涉及IEC 61131的、二、三和四部分,没有纳入1995年以后出版的五部分通信、七部分模糊控制编程软件工具、八部分IEC 61131-3语言的实现导则。

自标准颁布之后,并没有产生很大的影响。原因在于:中国不存在真正像样的PLC制造业; 在中国国内有影响的PLC并不积推介; 包括该标准的主管部门在内,很少有组织的推进活动。

直到1998年以后,由于IEC 61131-3在控制业界的影响越来越大,在中国国内有影响的PLC开始提及自身符合或兼容IEC 61131-3;若干新推出的DCS系统也公开宣称,符合或兼容IEC 61131-3。于是,人们才关注这个标准。在有关杂志上有专文介绍该标准的制订背景、重要性、标准的主要内容。中国机电一体化技术应用协会组织翻译了两名德国作者Karl-Heinz John和Miachael Tiegelkamp写的专著:“IEC 61131-3:工业自动化系统的程序编制”。现已由该协会内部发行。

近,中国机电一体化技术应用协会(CAbbbb)与以开发基于IEC 61131-3的编程系统称著的德国KW公司远东总经理Robert Champoud先生合作,组织协调有关IEC 61131项目的研讨会活动,得到Siemens、Phoenix、富士电机的大力支持。这对于促进它的推广,有着深远的意义。

软PLC在中国

所谓软PLC实际就是在PC机的平台上、在bbbbbbs操作环境下,用软件来实现PLC的功能。此概念大约在1996年以后才被介绍到国内来。由于这种技术尚不成熟,所以只有在学术界少数人对此关注。

尽管Interllution和 Wonderware的HMI和SA软件在我国推广都很成功,但它们的软逻辑、软PLC产品P-31和InControl却少有人问津。当然,这两家公司也不曾刻意去开发这个市场。

Think&Do和Steeperchase 的VLC都是1998、1999年进入中国市场的,特别是Think&Do花了很大的努力,至今仍不尽如人意。当然有一些成功应用,如邮件分拣系统。我感觉,这多少与它们不采用IEC 61131-3,而是倡导用流程图编程语言不无关系。

德国KW公司在1998年以后就在北京设立办事处,着力推广其符合IEC 61131-3的编程系统MULTIPROG和 控制程序ProConOS。

Siemens从2001年开始在国内推介其软PLC系列产品Wi,已经有了一些应用。他们是很有战略眼光的。德国Inforteam公司的 openPCS 在国内也开始了市场开拓活动,2002年6月曾在上海的自动化展览会上举办过技术交流。

我国自行开发的DCS系统,如上海自仪公司的SUPMAX-800,选用法国CJ International公司的符合IEC 61131-3的IsaGraf和美国的强实时操作系统Vxworks。北京的和理时已采用Inforteam的OpebPCS开发新的DCS。

分析全世界控制设备的发展情况

从全世界范围看,软PLC/ 制作为新兴产业正在发展。面对这种挑战,PLC仍在发展。

据美国Venture Development Corp.报告,2000年全世界共销售DCS系统,PLC系统和制系统达220亿美元。其中DCS 40.5%;PLC 46.3%;制13.2%。这三种控制系统所用的分散型/远程I/O的市场销售额也为220亿美元。年增长率为6.6%。到2005年估计达300亿美元。从应用领域看,DCS仍然牢牢把握大规模连续流程工业(I/O达数千点)过程控制的应用。PLC已经拥入批量控制市场,在其传统的离散制造工业仍然占据主导地位。软PLC/制采用工控PC机(或嵌入式PC机)和强实时OS,可实现PLC功能和运动控制。直至今日,制在性、性等方面还未广泛认可。

据美国Venture Development Corp.报告,PLC与软PLC/制相比具有以下优点:

* 维修务系统健全,有经验的维护人员队伍庞大。

电源故障不会产生大的影响。

* 对低端应用,PLC具有大的性能价格比优势。

* 性无可比拟,故障停机少。

* 加固型结构,适合工业环境应用。

* 与PC机发展太快相比,PLC产品可长期供货,长期提供技术支持。

PLC在工厂自动化中的地位之所以如此稳固,原因在于:

* PLC的技术具有长期的稳定性,软硬件均应用方便,即插即用,价格适中,堪称工业控制的适用技术。

* 可以说当今工业控制所要求的性能,PLC可满足85%至。其不足部分可用其它办法。

* 近几年来PLC也在不断提高其技术内涵,融合了IT技术(包括以太网,因特网,无线网技术,现场总线技术,以及运用软件工程方法提升PLC的编程语言,开发全新的编程系统,等等)。

* PLC在开放性方面也有了实质性的突破。多年PLC被攻击的一个重要方面就是它的专有性,现在有了大的改观。PLC采用了各种工业标准,如IEC 61131,IEEE802.3以太网,TCP/IP,UDP/IP等,各种事实上的工业标准,如bbbbbbs NT,OPC等。

* PLC在硬件上也有长足进步。微电子技术的进展全都运用到PLC中,元器件的集成度越来越高,促使PLC成本下降和性提高。专为PLC的CPU设计的PLC-on-a-chip芯片业已问世多年。

* PLC的产品在体系结构和操作系统上都有了质的变化,性能大幅提高。一个机架上可装多个CPU模块。也出现了以Web为基础的PLC系列产品。PLC、软PLC、IEC 61131在中国的未来传统的PLC制造业不会在可预见的未来在国内建立和发展。但不排除软PLC在近期和可预见的未来,有可能在国内形成一定的气候。软PLC的I/O可以利用主流及一些有生命力的现场总线的系列产品。强实时操作系统可采用bbbbbbs CE,NTE,VenturCom的RTX以及其它;只要它们能实现控制的时间确定性,即保证能以时间高度一致的方式执行控制指令序列,并具有可预测的结果或行为。

加入WTO以后,中国成为“世界制造工厂”的进程正在加速。我们有足够的理由相信,PLC、软PLC在中国的销售的年增长率会显著世界的平均年增长率。因此,对PLC、软PLC以及IEC 61131的推广应用,特别是高水平的技术支持变得十分重要。

随着现代工业的规模生产的发展,为提高企业的市场竞争力,引入管控一体化的体系结构ERP/MES/PCS,在国内已提到议事日程。作为基础自动化PCS层的主要工具—PLC的应对手段,应该是加强PLC联网和通信开发能力,以及信息初加工的能力。在国内,就平均水平而言,精通或通晓PLC联网通信、PLC与计算机通信的技术人员,与今后的需要相比,还有不少差距。为此,急需采取措施,加强培训。CAbbbb在这方面也应有所作为。

IEC 61131-3是目前的关于工控编程语言的标准。广泛应用于PLC、DCS、SA,甚至于运动控制。在国内IEC 61131-3的推广应用肯定大有作为。关键问题在于采用那些措施加快进程。

简短的结论和建议

PLC、软PLC/制、IEC 61131-3及其相关软件(强实时操作系统、编程系统平台等),在今后的十年内仍是工业控制舞台上主角。这要求我们把握时机,认清方向,抢占先机。

随着现场总线技术的发展和现场总线产品的普遍采用,除了加强IEC 61131-3的宣传推广外,还应多多宣传IEC 61499这个IEC 61131-3不能适应分布式系统缺憾的新标准。

在经过轮的IEC 61131-3的巡回演讲活动之后,应通过各种工具宣传,让从事工控的技术人员,特别是PLC的编程人员都知道,不掌握IEC 61131-3的编程语言,将会落伍,跟不上发展。

CAbbbb应扶植一两个开发软PLC/制的公司,抓几个有典型意义的应用项目,如规模较大的制造业生产线,成功后加以总结推广,让业内人士认识到软PLC/制的优越性。


PLC输入外部电路的外部节点形式共分为以下三种:
1、无源节点输入,即:开关节点输入。
2、NPN和PNP节点输入
3、二管输入
下面,就这三种节点输入的形式及接线方式简单说明一下。
1、无源节点输入(开关量输入)
此种节点形式是PLC输入用的多的一种形式。使用此种形式时,只要注意PLC的输入公共端是共阳还是共阴就行了。如为共阳,则通过开关节点引入的应该是负,如为共阴,则经过开关节点引入的应该是正。如下图所示(括号内为共阳时):

2、NPN和PNP节点输入
一些传感器或接近开关的输出节点是NPN或PNP节点形式。这时,做为PLC的输入是选NPN还是PNP节点,一方面要看要看PLC的接线形式而定,另外还要看传感器或接近开关的接线形式。下面举例来说明:
如下图所示,传感器的输出是NPN形式的。从图中负载接线可知,传感器动作时,输出0V(黑线④处)。这就要求,PLC的公共端(COM)是正。因此,对于此线路,当PLC的公共端接(CON)正时,PLC的输入就只能用NPN形式。

下图正好相反,当传感器动作时,其输出为正(黑线④处)。此时,就要求PLC的公共端(COM)接负。因此,对于此线路,当PLC的公共端接负时,PLC的输入就只能用PNP的形式。

PLC的输入节点到底是采用PNP还是NPN的形式,其实大不可必死记。只要明白PLC输入内部的电路原理就行了,即:采用PNP还是NPN节点,都保证PLC输入电路内部的光电耦合部分的发光二管得电。
以上两例是以西门子PLC为例,西门子PLC输入内部线路的光电耦合的公共端可以是共阴或共阳,因此,在考虑使用NPN或PNP输入时,可以改变公共端(COM)的正或负来分别使用;而对于三菱FX系列的PLC,因光电耦合的公共端是固定采用共阳的,因此公共端只能接正,输入也就只能使用NPN节点输入方式了。
3、串二管输入
有时,需要在PLC的输入节点中串入一个发光二管来为指示。如下图所示:
 
此时,一般PLC都会规定串入二管的允许电压降及允许串入的二管的个数。比如,上图所示的FX系列的PLC规定,发光二管允许电压降为4V,多允许中时串入2个。


20220219150511128134.jpg202202191505112029334.jpg202202191505111181204.jpg



PLC过程控制常见故障分析及维护为了延长PLC控制系统的寿命,在系统设计和生产使用中要对该系统的设备消耗、元器件设备故障发生点有较明白的估计,也就是说,要知道整个系统哪些部件容易出故障,以便采取措施。本文将对PLC过程控制系统故障分布规律进行分析。 为了延长PLC控制系统的寿命,在系统设计和生产使用中要对该系统的设备消耗、元器件设备故障发生点有较明白的估计,也就是说,要知道整个系统哪些部件容易出故障,以便采取措施。现以我厂特种水泥1号线的PLC过程控制系统为例,对PLC过程控制系统故障分布规律进行分析,希望能对PLC过程控制系统的系统设计和U常维护有所帮助。
  1.系统故障的概念  系统故障一般指整个生产控制系统失效的总和,它又可分为PLC故障和现场生产控制设备故障两部分。PLC系统包括处理器、主机箱、扩展机箱、I/O模块及相关的网络和外部设备。现场生产控制设备包括I/O端口和现场控制检测设备,如继电器、接触器、阀门、电动机等。 
 2.系统的故障统计及分析处理 
2.1我厂特种水泥1号线过程控制系统简介  2005年该系统改造时采用日本二菱公司的A2系列PIC为组成的PLC过程控制系统。系统配置如图1。  图1 系统配置框图  该系统有2个集中控制室:窑尾控制室和窑头控制室,其中窑头控制室为主站;2个现场工作站:窑尾生料自动配料工作站和窑尾成球盘自动加水成球工作站;2个电视监控系统:预热器进口下料监控和窑头电视看火。现场工作站是立的微机自动控制系统,它与主站只进行模拟量的通讯和开关量的联锁。主站与从站间采用帧同步全双工通讯方式: 
 2.2系统故障数据的统计  该系统运行近3年来PLC故障统计如表1。  现场控制设备故障统计如表2  经统计,系统故障共计126次,其中PLC的故障比例约为4.7%,现场部分故障比例约为95.3%,:对照其他PLC过程控制系统的故障数据,并考虑该系统运行时间不是很长,该比例比较接近一般PLC过程控制系统的故障分布规律,有一定的普遍性。一般来讲PIC部分的故障比例约为5%,现场控制设备的故障比例约为95%。  PLC过程控制系统故障分布的估计图[1]如图2。  图2 系统的故障分布 
 2.3系统故障分析及处理 
2.3.1PLC 主机系统  PLC主机系统容易发生故障的地方一般在电源系统和通讯网络系统,电源在连续工作、散热中,电压和电流的波动冲击是不可避免的。通讯及网络受外部干扰的可能性大,外部环境是造成通讯外部设备故障的大因素之一。系统总线的损坏主要由于现在PLC多为插件结构,长期使用插拔模块会造成局部印刷板或底板、接插件接口等处的总线损坏,在空气温度变化、湿度变化的影响下,总线的塑料老化、印刷线路的老化、接触点的氧化等都是系统总线损耗的原因。所以在系统设计和处理系统故障的时候要考虑到空气、尘埃、紫外线等因素对设备的破坏。目前PLC的主存储器大多采用可擦写ROM,其使用寿命除了主要与制作工艺相关外,还和底板的供电、CPU模块工艺水平有关。而PLC的处理器目前都采用的处理芯片,故障率已经大大下降。对于PLC主机系统的故障的预防及处理主要是提高集中控制室的管理水平,加装降温措施,定期除尘,使PLC的外部环境符合其安装运行要求;同时在系统维修时,严格按照操作规程进行操作,谨防人为的对主机系统造成损害。 
2.3.2 PLC的I/O端口  PLC大的薄弱环节在I/O端口。PLC的技术优势在于其I/O端口,在主机系统的技术水平相差无几的情况下,I/O模块是体现PLC性能的关键部件,因此它也是PLC损坏中的环节。要减少I/O模块的故障就要减少外部各种干扰对其影响,要按照其使用的要求进行使用,不可随意减少其外部保护设备,其次分析主要的干扰因素,对主要干扰源要进行隔离或处理。 
 2.3.3现场控制设备  在整个过程控制系统中容易发生故障地点在现场,表2列出了现场中容易出故障的几个方面。  1)类故障点(也是故障多的地点)在继电器、接触器。如该生产线PLC控制系统的日常维护中,电气备件消耗量大的为各类继电器或空气开关。主要原因除产品本身外,就是现场环境比较恶劣,接触器触点易打火或氧化,然后发热变形直至不能使用。在该生产线上所有现场的控制箱都是选用密闭性较好的盘柜,其内部元器件较其他采用敞开式盘柜内 元器件的使用寿命明显要长。所以减少此类故障应尽量选用继电器,改善元器件使用环境,减少换的频率,以减少其对系统运行的影响。  2)二类故障多发点在阀门或闸板这一类的设备上,因为这类设备的关键执行部位,相对的位移一般较大,或者要经过电气转换等几个步骤才能完成阀门或闸板的位置转换,或者利用电动执行机构推拉阀门或闸板的位置转换,机械、电气、液压等各环节稍有不到位就会产生误差或故障。长期使用缺乏维护,机械、电气失灵是故障产生的主要原因,因此在系统运行时要加强对此类设备的巡检,发现问题及时处理。我厂对此类设备建立了严格的点检制度,经常检查阀门是否变形,执行机构是否灵活可用,控制器是否有效等,很好地保证了整个控制系统的有效性。  3)三类故障点可能发生在开关、限位置、保护和现场操作上的一些元件或设备上,其原因可能是因为长期磨损,也可能是长期不用而锈蚀老化。如该生产线窑尾料球储库上的布料行走车来回移动频繁,而且现场粉尘较大,所以接近开关触点出现变形、氧化、粉尘堵塞等从而导致触点接触不好或机构动作不灵敏。对于这类设备故障的处理主要体现在定期维护,使设备时刻处于完好状态。对于限位开关尤其是重型设备上的限位开关除了定期检修外,还要在设计的过程中加入多重的保护措施。  4)四类故障点可能发生在PLC系统中的子设备,如接线盒、线端子、螺栓螺母等处。这类故障产生的原因除了设备本身的制作工艺原因外还和安装工艺有关,如有人认为电线和螺钉连接是压的越紧越好,但在二次维修时很容易导致拆卸困难,大力拆卸时容易造成连接件及其附近部件的损害。长期的打火、锈蚀等也是造成故障的原因。根据工程经验,这类故障一般是很难发现和维修的。所以在设备的安装和维修中一定要按照安装要求的安装工艺进行,不留设备隐患。  5)五类故障点是传感器和仪表,这类故障在控制系统中一般反映在信号的不正常。这类设备安装时信号线的屏蔽层应单端接地,并尽量与动力电缆分开敷设,特别是高干扰的变频器输出电缆,而且要在PIC内部进行软件滤波。这类故障的发现及处理也和日常点巡检有关,发现问题应及时处理。  6)六类故障主要是电源、地线和信号线的噪声(干扰),问题的解决或改善主要在于工程设计时的经验和日常维护中的观察分析。  要减小故障率,很重要的一点是要重视工厂工艺和操作规程,在日常的工作中要遵守工艺和操作规程,严格执行—些相关的规定,如保持集中控制室的环境等等,同时在生产中也要加强这些方面的霄理。  结束语  过程控制系统本身是一个完整的系统,所以在分析故障或处理故障时也要注意系统性,单的对某一部分的优化有时并不能提高系统的整体性能。如过分追求元器件的精度而不考虑实际的需要以及和相关设备精度的匹配,将徒然增加系统成本。在日常维护中也有过把系统越改越复杂的现象,如采用复杂的控制方式和设备来实现本可以用简单装置来实现的控制,违背了经济、简单、实用的原则,并可能会增加故障率,这也是要注意的地方。



http://zhangqueena.b2b168.com

产品推荐