• 西门子6ES7231-0HF22-0XA0库存
  • 西门子6ES7231-0HF22-0XA0库存
  • 西门子6ES7231-0HF22-0XA0库存

产品描述

产品规格模块式包装说明全新

西门子6ES7231-0HF22-0XA0库存


一、前言 

世界上台可编程序控制器产生于1969年,是由当时美国数字设备公司(DEC)为美国通用汽车公司(GM)研制开发并成功应用于汽车生产线上,被人们称为可编程序逻辑控制器(Programmable Logic Controller),简称PLC。在70年代,随着电子及计算机技术的发展,出现了微处理器和微计算机,并被应用于PLC中,使其具备了逻辑控制、运算、数据分析、处理以及传输等功能。电气制造商协会NEMA(National Electrical Manufacturers Association)于1980年正式命名其为可编程序控制器(Programmable Controller),简称PC。为与个人计算机(Personal Computer)相区别,同时也使用其早期名称PLC。电工技术IEC(International Electrotechnical Commission)分别于1982年11月和1985年1月颁布了PLC的稿和二稿标准。以后PLC开始向小型化、高速度、、高性方面发展,并形成多种系列产品,编程语言也不断丰富,使其在80年代工业控制领域中占据着主导地位。 

可编程序控制器是以微处理器为基础,综合了计算机技术与自动控制技术为一体的工业控制产品,是在硬接线逻辑控制技术和计算机技术的基础上发展起来的。通常把PLC认为是由等效的继电器、定时器、计数器等元件组成的装置。 

二、可编程序控制器简介 

PLC组成:处理单元(CPU)、存储器、输入/输出单元(I/O单元)、电源、编程器等; 

PLC分类:按照结构形成分为整体式和模块式;按照输入/输出(I/O)点数分为小、中和大型; 

PLC特点:性高,通用性强,编程简单(常用编程语言有梯形图、语句表、逻辑符号图、顺序功能图和语言等),体积小,安装维护简便等; 

PLC工作方式:PLC是采用循环扫描的工作方式,即每一次状态变化需一个扫描周期。PLC循环扫描时间一般为几毫秒至几十毫秒。整个过程分为内部处理、通信、输入处理、执行程序、输出处理几部分; 

PLC发展趋势:向高速度、大容量、多种类发展;丰富编程语言,开发用户友好界面;开发智能模块;加强联网通讯能力;予留现场总线接口(现已有产品应用,如:SIEMENS SIMATIC S7-400);拥有智能诊断等功能;保护功能加强,有效保护用户信息,防止非法复制、修改;对现场环境的适应能力强。 

三、可编程序控制器选型 

在PLC实际应用中,是以其为控制组成电气控制系,实现对生产、工业过程的控制。 

方案设计步骤 

要了解被控制对象的机构、运行过程等,并明确动作逻辑关系; 

根据系统功能要求(包括输入、输出信号数量的多少、性质、参数;有无特殊功能要求;是否联网运行等)选择PLC型号及各种附加配置,并有规则、有目的的分配输入、输出点; 

根据控制及流程要求,对应输入、输出开发相应应用程序;同时连接PLC与外部设备连线; 

将编制完成的程序写入PLC中,模拟工况运行,进行调试及修改;在模拟调试成功后,接入现场实际控制系统中进行再次调试,直至通过为止。 

四、应用体会 

1、选型 

在PLC选型是时主要是根据所需功能和容量进行选择,并考虑维护的方便性,备件的通用性,是否易于扩展,有无特殊功能要求等。 

PLC输入/输出点确定:I/O点数选择时要留出适当余量; 

PLC存储容量:系统有模拟量信号存在或进行大量数据处理时容量应选择大一些; 

存储维持时间:一般存储约保持1~3年(与使用次数有关)。若要长期或掉电保持应选用EEPROM存储(不需备用电源),也可选外用存储卡盒; 

PLC的扩展:可通过增加扩展模块、扩展单元与主单元连接的方式。扩展模块有输入单元、输出单元、输入/输出一体单元。扩展部分出主单元驱动能力时应选用带电源的扩展模块或另外加电源模块给以支持; 

PLC的联网:PLC的联网方式分为PLC与计算机联网和PLC之间相互联网两种。与计算机联网可通过RS232C接口直接连接、RS422+RS232C/422转换适配器连接、调制解调通讯连接等方式;一台计算机与多台PLC联网,可通过采用通讯处理器、网络适配器等方式进行连接,连接介质为双绞线或光缆;PLC之间互联时可通过通讯电缆直接连接、通讯板卡或模块+数据线连接等方式。 

2、充分合理利用软、硬件资源 

不参与控制循环或在循环前已经投入的指令可不接入PLC; 
多重指令控制一个任务时,可先在PLC外部将它们并联后再接入一个输入点; 

尽量利用PLC内部功能软元件,充分调用中间状态,使程序具有完整连贯性,易于开发。同时也减少硬件投入,降低了成本; 

条件允许的情况下立每一路输出,便于控制和检查,也保护其它输出回路;当一个输出点出现故障时只会导致相应输出回路失控; 

输出若为正/反向控制的负载,不仅要从PLC内部程序上联锁,并且要在PLC外部采取措施,防止负载在两方向动作; 
PLC紧急停止应使用外部开关切断,以确保。 

3、使用注意事项 

不要将交流电源线接到输入端子上,以免烧坏PLC; 
接地端子应立接地,不与其它设备接地端串联,接地线裁面不小于2mm2; 
辅助电源功率较小,只能带动小功率的设备(光电传感器等); 
一般PLC均有一定数量的占有点数(即空地址接线端子),不要将线接上; 
输出有继电器型,晶体管型(高速输出时宜选用),输出可直接带轻负载(LED指示灯等); 
PLC输出电路中没有保护,因此应在外部电路中串联使用熔断器等保护装置,防止负载短路造成损坏PLC; 
输入、输出信号线尽量分开走线,不要与动力线在同一管路内或捆扎在一起,以免出现干扰信号,产生误动作;信号传输线采用屏蔽线,并且将屏蔽线接地;为保证信号,输入、输出线一般控制在20米以内;扩展电缆易受噪声电干扰,应远离动力线、高压设备等。 
输入/断开的时间要大于PLC扫描时间; 
PLC存在I/O响应延迟问题,尤其在快速响应设备中应加以注意。 

4、故障检查与排除 

(1)故障显示 

①设计时可使每一个故障点均有信号表示。优点是直观便于检查,缺点是程序复杂且输出单元占用较多,投资较大; 
②设计时也可将所有故障点均由一个信号表示。优点是节约成本,减少了对输出单元 的占有,缺点是具体故障回路不能直接判断出; 
③设计时还可将性质类似的一组故障点设成一个输出信号表示。 

以上三种方案各有利弊,在条件允许、并且每个回路均很重要,要求快速准确判断出故障点时采用种方案较好;一般情况下采用三种方案比较好,由于故障分类报警显示,就可直接判断出故障性质,知道会对设备或工业过程造成何种影响,可立即采取相应措施加以处理,同时再结合其它现象、因素、另一组或几组报警条件将具体故障点从此类中划分出来。整个PLC内部程序、外部输出点及接线增加不多,性能价格比较高。 

(2)输入、输出故障的排除 

一般PLC均有LED指示灯可以帮助检查故障是否由外部设备引起。不论在模拟调试还是实际应用中,若系统某回路不能按照要求动作,应检查PLC输入开关电接触点是否(一般可通过查看输入LED指示灯或直接测量输入端),若输入信号未能传到PLC,则应去检查输入对应的外部回路;若输入信号已经采集到,则再看PLC是否有相应输出指示,若没有,则是内部程序问题或输出LED指示灯问题;若输出信号已确信发出,则应去检查外部输出回路(从PLC输出往后检查)。 

在输出回路中,由于短路或其它原因造成PLC输出点在内部粘滞,只需将其接线换至另一予留的空接线点上,同时修改相应程序,将原输出标号改为新号即可PLC虽然适合工业现场,使用中也应注意尽量避免直接震动和冲击、阳光直射、油雾、雨淋等;不要在有腐蚀性气体、灰尘过多、发热体附近应用;避免导电性杂物进入控制器。


随着PLC技术的发展,PLC的表现形式和功能都已经有很大的发展,从过的那种比较单一立单元时结构发展到了现在的模块化、网络化、分布式控制的PLC,比如象比较有代表性的AB的Controllogix,MODICON的Quantum,都是大型PLC的典型形式。这些大型PLC可以应用到比较重要、控制规模比较大的工业现场,控制的点数可以有几千点,自然,这种情况下,如果仍然沿用过去PLC的工作方式的话就不能很好完成这种情况下的控制任务,事实也确实如此,大中型PLC的工作方式和小型PLC的已经有了很大的不同。 

大中型PLC的一个扫描周期分为六个阶段: 

1、 自监视扫描阶段 

为了保证工作的性,PLC内部具有自监视或自诊断功能,自监视功能是由监视定时器(WDT,watchdog timer)完成的,WDT是一个硬件时钟,自监视过程主要是检查及复位WDT,如果在复位前扫描时间已经过WDT的设定值,CPU将停止运行,IO复位,给出报警信号,这种故障称为WDT故障。WDT故障可能由CPU硬件引起,也可能用户程序执行时间太长,使扫描时间过WDT时间而引起的,用编程器可以故障。WDT的设定一般是150-200ms,一般系统的时间都小于50-60ms。在大中型PLC中一般可以对WDT进行修改。 

2、 与编程器交换信息阶段 

用户使用编程器(计算集中的编程软件)对PLC进行用户程序的上传、下载或者使用上位机中的SA系统对PLC进行监视控制时,PLC的CPU交出控制权,处于被动状态,上述工作完成或达到信心交换的规定时间后,CPU重新得到总线权,恢复主动状态。 

在这一阶段中,用户可以通过编程器修改内存的程序,启停CPU,控制IO。 

3、 与数字处理器DPU交换信息的阶段 

当配有DPU时,才会有这一阶段。 

4、 与网络进行通讯的阶段 

目前的大中型PLC都是用现场总线协议进行大量数据的交换,比如,controllogix使用controlnet,quantum使用MODBUS PLUS,在这一段十进之中,PLC和网络进行数据的交换。 

5、 用户程序扫描阶段 

PLC处于运行状态时,一个扫描周期中就包含了用户程序的扫描阶段。该阶段中,根据用户程序中的指令,PLC从输入状态暂存区和其他软元件的暂存区中将有关状态读出,从条指令开始顺序执行,每一步的执行存入输出状态暂存区。 

6、 IO服务扫描阶段 

CPU在内存中设置两个暂存区,一个是输入暂存区(输入映象寄存器),一个是输出暂存区(输出映象寄存器),执行用户程序时,用到的输入值从输入暂存区中,放在输出暂存区。在输入服务(输入采阳及刷新)中,CPU将实际的输入端的状态读入到输入暂存区;在输出服务(输出刷新与锁存)中,CPU将输出暂存区的值同时传送到输出状态锁存器。 

输入暂存区的数据取决于输入服务阶段各实际输入点的状态,在用户程序执行阶段,输入暂存区的数据不在随输入端的变化而变化,该阶段中,输出暂存区根据执行结果的不同而变化,但输出锁存器内容不变。

20220222173907301904.jpg202202221739073176584.jpg202202231145374832754.jpg

底盘测功机是汽车、摩托车行业重要的试验设备。以直要从国外全套进口。我所从2000年开始进行研制,经过几年的努力,现已形成多种规格的ACD系列交流底盘测功机商品,推向市场后受到用户的欢迎和。这里介绍我们开发的,以1336变频器、SLC500系列PLC、DeviceNet总线为主要部件的交流底盘测功机电控系统,以期得到**的指正。
一 底盘测功机的基本原理
底盘测功机的基本结构请参看图1。试验摩托车的后轮放在一个大转鼓上,用转鼓的表面代替路面,相对于车辆作旋动。转鼓轴端与测功机同轴相联,构成测功机—转鼓机组。试验时测功机给转鼓施加阻转矩来模拟车辆在道路行驶时的阻力。摩托车前轮用“前轮夹持器”夹住,保证车辆前后不能移动左右不会倾倒。试验车辆的正前方安放一个风机,用于冷却车辆。冷却风机的出口风速要求严格跟踪车速(转鼓表面线速度),其电控也是整个系统的一部分,通常由底盘测功机生产厂商配套提供。


试验时车辆后轮带动转鼓-测功机旋转。测功机提供阻转矩,使车辆发动机受到的阻力等效于同等工况下在道路试验中受到的阻力;风机的风速跟踪车速,使车辆发动机(还有传动箱、轮胎等)的冷却条件与道路试验等效。这样车辆就可以在底盘测功机上模拟道路行驶。系统还配备了对速度、时间、距离、温度、压力、油耗等项目的测量环节,由计算机进行数据采集和控制。整个系统协调运转,驾驶员在显示器的提示下按照试验要求驾驶车辆,这样就可以在底盘测功机上进行车辆的性能试验了。例如加速性能、车速、燃油消耗、工况排放(要另配排气分析仪)等项目试验。与室外道路试验相比,在底盘测功机上进行车辆试验具有、和重复性好的优点。
汽车用底盘测功机原理相同,也是驱动轮放在转鼓上进行试验。只是转鼓宽,测功机功率大一些。
用于加载的测功机是重要的部件。测功机(包括其控制系统)的形式、性能、精度直接决定了整套设备的性能和精度。可供利用的测功机主要有3种:电涡流测功机、直流测功机和交流测功机。从1960年代到1990年代直流测功机是电力测功机的主流。1990年代中期以后随着变频器技术的成熟与进步,交流测功机逐步取代直流测功机发展成为电力测功机的主流。
二 变频器的选型
底盘测功机是一种试验设备,要求的转速、转矩控制精度比一般生产设备高得多,因此其电控系统对变频器的要求也比一般的生产设备严格得多,主要体现在:
1四象限运行 测功机既能提供驱动转矩(电动运行)又能提供阻转矩(发电运行),而且绝大部分时间运行在发电状态。测功机发出的电通过变频器回馈电网。
2 转速/转矩控制 底盘测功机通常有三种运行模式:
2.1 ASR(Auto Speed Regulate ) 转速自动控制。调速范围>200:1,精度0.1%。
2.2 ATR(Auto Torque Regulate ) 转矩自动控制。转矩调整范围>500:1 精度 0.5%
2.3 ALR(Auto Load Regulate ) 自动道路负荷控制。每一车辆的行驶阻力是车辆惯性质量、行驶速度、加速度、爬坡坡度角等变量的函数。测功机要按照设定的函数关系实时控制测功机的阻转矩,使车辆在底盘测功机上试验与在道路行驶试验效果一样。
我们分析怎样用变频器来实现上面3种运行模式:
ASR模式,对于工程型变频器,只要加上编码器反馈形成转速闭环控制,很容易满足要求。
ATR模式,精度要求太高,现有的各种变频器,无论是矢量控制、直接转矩控制(DTC)还是磁场定向技术(Force),用直接控制转矩的方法都达不到0.5%的精度。各变频器厂商给出的转矩控制精度指标大体是:有编码器反馈2%,无编码器反馈5%。这样精度对于大部分生产机械或许够了,对于测功机还不行。要满足测功机的转矩控制精度要求,使用转矩闭环控制。
ALR模式是ATR的扩展,要另外用一个称作“道路阻力设定器”的单元来完成速度的实时测量和行驶阻力的计算,算出的作为转矩指令下达给变频器,变频器控制测功机的转矩输出。
3 上述3种模式能在动态运行中平稳切换。
4 电磁干扰要小。底盘测功机电控系统里至少要有2台变频器,而且要向电网回馈电能。易对周围的电器造成干扰。实验室周围往往有许多其他仪器、试验设备。因此变频器的电磁兼容性一定要好。
我们根据上面的要求在市场上初选了4个变频器,经过进一步调查分析后选用了Lockwell AB公司的1336系列变频器。
三 系统构成
参看图2 。这是一个双电机传动系统。主回路中使用了整流回馈单元1336Regen;可将直流母线上的电能回馈电网,以保证测功机四象限运行。对于转矩控制要求严格的测功机变频器选用了具有Force技术的1336Impact,风机变频器只有转速控制,用了1336PlusⅡ。


整流回馈单元Regen设定在DCbus工作模式,测功机变频器Impact和风机变频器PlusⅡ与Regen共用直流母线,由Regen供/馈电。这样的结构使测功机发出的电可以经过变频器直流母线直接送到风机变频器和驱动电机。
底盘测功机系统中的双电机传动系统有这样一些特点:
1底盘测功机在正常做车辆试验时,测功机总是提供阻转矩处于发电状态,风机电机总是提供驱动转矩处于电动状态;
2风机电机的转速(成比例)跟踪测功机转速;
3两台电机有共同的转速-转矩特性:转矩与转速的平方成正比;
4两台电机的额定功率处于同一量级:(摩托车用)测功机22-55kW,风机电机30-55kW。
对于这样的双电机传动系统而言,两个电机共用直流母线无疑是的方案。测功机发出的电功率大于/小于风机电机耗电功率时,只有差额部分通过整流回馈单元Regen自动向电网回馈/索取,电能大部分在系统内部通过直流母线交换,使整个系统与电网之间电能交换功率降至小,对电网的污染也降至。众所周知工作在PWM状态下的变流器对电网会造成污染,向电网馈电比从电网用电污染甚。我们实际测量了不同情况下系统直流母线的流向,进行摩托车试验时,一般总是测功机发电功率小于风机电机耗电功率,向电网馈电的机会不多。当测功机和风机在高速大负荷运转时整个设备的进线电流却不大,这种现象引起客户的关注继而得到。
测功机是一种动态控制、测量动力机械转速、转矩的设备,安装有的转角编码器和转矩测量装置。为实现ASR转速控制运行方式,在Impact上加装了编码器接口板L7E,测功机的编码器通过L7E接入Impact构成转速闭环,轻轻松松达到0.05%的调速精度。
再来看转矩控制,变频器里显示的“转矩”是根据电压、电流、相位等电参数算出来的的“电机电磁转矩”,与测功机实测出的“机械轴转矩”相比,精度差得远,达不到千分之几的精度。再者无论变频器内部各种控制环节如何复杂,从“变频器-测功机”系统总体上看直接转矩控制方式是“开环”的。因此直接利用变频器转矩控制功能是达不到测功机ATR工作方式精度要求的。测功机控制系统必需构成转矩闭环控制,并且转矩大小是用力学方法测量出来的机械轴转矩。而不是用电参数算出来的电磁转矩。
从自动控制理论我们知道构成闭环控制要有测量、反馈、调节器、执行器等几个环节。测功机本体上已经安装了转矩测量装置,执行器就是变频器和测功机,现在只缺少进行比较计算的调节器。可以用运算放大器构成硬件PID调节器,这是早期测功机控制系统的典型做法;也可以用计算机构成数字PID调节器,用软件来实现,这种方法对计算机系统的实时性要求很高,容易与其它子系统争夺系统资源,导致性不高。我们为转矩闭环问题颇费了一番心思,后利用Impact内部的Ptrim功能构成了转矩闭环。测功机转矩信号通过Impact的Analog bbbbb 1端口接入变频器作为反馈信号,变频器里的Ptrim环节包含一个PI调节器,用作转矩调节器,通过设置、链接相关bbbbbeter构成了转矩闭环控制。这样比说的方法简单、、效果好。测功机转矩控制精度达到了0.5%,测功机动态特性良好,充分展示了交流测功机精度高和响应速度快的优良特性,为整套底盘测功机的高技术指标打下坚实的基础。
底盘测功机是一种复杂的、自动化程度很高的设备,计算机、变频器、PLC之间传输的信息不少。现在我们用AB公司的SLC500系列PLC做底层测量和控制,诸如互锁、报警等均由PLC管理。试验车辆的温度、转速等一些测量工作由Flex IO模块担当。PLC、变频器、Flex IO通过DeviceNet网络互连,主控计算机通过以太网线与PLC相连,这样就组成了一个小小的内部网络,各种指令、信息通过网络传输。与我们早期的IO单线传输方式相比,使用DeviceNet网络的测功机设备的特点是:
1设备内部连接电缆大大减少,现场安装工作快捷。
2传输的信息量大了。
3传输的指令、信息精度高了。原来IO方式下转速、转矩指令经由计算机算出后要经过DA转换板转换成模拟电压接入到变频器的Analog bbbbb端口,再由变频器内部的AD转换器转换成数字量才能进行计算控制。本来计算机和变频器里用的都是数字量,中间传输环节这么AD、DA的转换两次不但费事还人为的降低了精度加进了失真。
4 信号抗干扰能力提高了,原来的一些模拟信号线(例如转速、转矩指令)容易受到变频器等外界干扰,现在用网络传输,外界干扰影响少多了。
5 造价提高了。DeviceNet需要通过PLC里的Scaner实现计算机和变频器的信息传输,而低档的PLC没有Scaner 这就限制了用户只能使用较为的PLC;另外DeviceNet的电缆、接头价格不菲,这些都导致了成本的上升。
四 使用效果
底盘测功机的技术指标和性主要取决于测功机-转鼓机组和电控系统。对此我们采取的措施是:
测功机-转鼓机组 采用我所具有知识产权的“外风冷全封闭式交流电力测功机”。精心设计制造的机械结构加上装有光电编码器(转速传感器)和0.02级力传感器(转矩传感器),从根本上保了转速转矩的测量精度。
电控系统 以Lockwel AB公司的产品(1336系列变频器、SLC500系列PLC、DeviceNet网络)为基础件,构成完善的控制环节。
1336Impact变频器的优良性能(转速、转矩控制精度)和丰富功能令人满意,所需要的功能变频器里几乎都给准备好了,其精度大可放心。如果要建立一个复杂的的电气传动系统,只要认真学习其原理,合理设置通道、建立信号链接,调整好信号通道的满度系数、偏移量、通道带宽等参数,就可望达到所期望的效果。
以Lockwell AB公司器件为主的ACD系列交流底盘测功机具有优异的技术指标和良好的性,的测功机与1336Impact变频器配合良好,相得益彰,整套设备的主要技术指标(转矩静校、转矩动态控制精度、速度控制精度等)达到了工业发达国家同类产品的水平。



http://zhangqueena.b2b168.com

产品推荐