• 西门子模块6ES7214-1BD23-0XB8库存
  • 西门子模块6ES7214-1BD23-0XB8库存
  • 西门子模块6ES7214-1BD23-0XB8库存

产品描述

产品规格模块式包装说明全新

西门子模块6ES7214-1BD23-0XB8库存


顺序控制就是使系统能按一定的顺序工作,常用于离散的生产过程控制。顺序控制又可以分为确定顺序控制和随机顺序控制,在生产机械运行中常为确定顺序控制,控制对象工作过程或顺序是确定的。用 PLC 进行顺序控制是 PLC 的基本应用,也是PLC 的优势所在,在生产机械的自动化控制领域中,PLC 顺序控制系统的应用很广泛。

常用的生产机械顺序控制系统运行时,设备按照生产工艺预先规定的顺序,在各个输入信号的作用下,根据内部状态和时间的顺序,在生产过程中各个执行机构自动地有秩序地进行操作,且这些动作严格按照一定的先后次序执行。PLC 顺序控制系统的输入信号大多数是行程开关、接近开关、光电开关、干簧管开关、霍尔元件开关等位置检测开关,有时也采用压力继电器、定时器等。

FX 系列 PLC 顺序控制程序的编程方法有很多,如状态转移图和步进梯形图编程、起动 - 保持 - 停止电路编程、置位和复位指令编程、移位指令编程等。本文以三菱的 FX 系列 PLC 为例,说明实现顺序控制的常用四种程序设计方法。

1 状态转移图和步进梯形图编程
状态编程就是将一个复杂的控制过程分解为若干个工作状态,明确各状态的任务、状态转移的条件以及转移的方向,然后再依据总的控制顺序要求,把这些状态组合形成状态转移图,后依一定的规则将状态转移图转绘为步进梯形图程序。因此步进梯形图和状态转移图是一一对应的,在进行编程时,我们是要根据设备的工艺过程控制要求,绘出状态转移图。

状态法编程思想其实就是将复杂的顺序控制过程分解为若干个工作“状态”,然后分别进行编程,后再组合成整体程序。这种编程方法可以使编程工作程序化和规范化,是 PLC 程序设计的重要方法。状态转移图是状态编程的工具,图中包含了顺序控制程序所需用的全部状态及各状态间的相互联系。对某一具体状态来说,状态转移图给出了该状态的驱动任务、状态转移的条件和状态转移的方向。因此,状态转移图可以非常清晰地表达出顺序控制的整个工艺流程,形象直观,可读性很强,特别在复杂的顺序控制程序中应用起来非常方便。

例如,某 PLC 控制的送料小车,小车原位停止时压下限位开关 SQ1(X0),按下启动按钮 SB(X2),Y2接通小车前进,当运行到料斗下方时压下限位开关SQ2(X1),Y2 断开小车停止,同时 Y0 接通料斗门打开给小车加料,延时 10 秒后关闭料斗,Y3 接通小车后退返回,当回到原位时压下限位开关 SQ1(X0),Y3断开小车停止,Y1 接通小车底门打开卸料,延时 8 秒后卸料结束,完成一次动作,并可以循环。

该运料小车控制系统为典型的顺序控制,采用状态编程,其状态转移图如图 1 所示。 在负载驱动部分,Y1 加 X1 的常闭的作用是压下限位开关后,能让电动机电源及时切断,确保准确定位,从而保证运料小车工作的性。小车运动控制状态转移图可以转换成对应的步进梯形图,步进开始用STL 指令,其具有主控和跳转功能,确保各状态驱动严格按顺序进行,步进结束用 RET 指令返回。
 
图 1 状态转移图

2 使用启动- 保持 - 停止电路编程

启动 - 保持 - 停止电路是基本的 PLC 控制电路,有关断和接通两种形式,一般采用关断控制,同时也可以衍生出许多常用控制电路程序。利用启动 - 保持 - 停止电路思想,按照实际的控制逻辑,也可以很方便的设计出顺序控制程序。

例如某设备工作循环为:X1 接通后 Y1 接通—X2 接通后 Y2 接通,同时 Y1 断开—X3 接通后 Y3 接通,同时 Y2 断开—X4 接通后 Y1 接通,同时 Y3 断开,自动循环。利用启动 - 保持 - 停止电路设计的控制梯形图如图 2 所示,系统启动后能一直按顺序自动循环运行,若 X5 接通,则 Y0-Y3 都断开,系统停止工作。控制梯形图利用常开常闭触点、线圈等来实现输出的顺序接通控制,控制逻辑也很直观,停止信号接通时,执行数据传送指令 MOV,使 Y0-Y3 都清零断开,实现设备停止。
 
图2 起保停实现顺序控制
 
3 使用置位和复位指令编程
利用置位指令 SET 和复位指令 RST 也可以实现顺序逻辑控制,图 3 所示的顺序控制可以改为利用SET 和 RST 来实现。由于作用于输出继电器这类位元件时,SET 指令是实现接通并且保持,RST 指令是断开并且保持。因此控制程序中就不再需要用输出继电器的常开触点来自锁,直接由触点逻辑条件来控制输出继电器的复位和接通就可以,这种编程方法的顺序转换关系明确,程序也很容易理解,常用于控制系统中手动控制程序的设计。
 
图3 位移位指令顺序循环控制

4 使用移位指令编程
FX 系列 PLC 的移位指令常用的有循环移位指令和位移位指令。循环移位指令可以使数值或状态实现自动循环移位变换,使用简单,但是只能操作 16位或 32 位数据,使用受到限制。位移位指令使用灵活,可以对范围内的任意位数据移位。用移位指令设计的梯形图看起来简洁,指令也较少,但对较复杂控制系统设计就不方便,在工业控制中较少使用,大多数应用于彩灯顺序控制电路中。如图 3 所示的控制程序,利用位移位指令实现了 Y0—Y11 共 10 个输出继电器的顺序轮流接通。当 X0 接通时,Y0—Y11 正序轮流接通 1 秒;当 X0 断开时,Y0—Y11 反序轮流接通 1 秒,且能循环。如果输出接彩灯即可以实现彩灯的顺序自动控制


目前世界工业机械手均有高精化、高速化、多轴化、轻量化的发展趋势。 重要的是将机械手、柔制造系统和柔制造单元相结合,从而根本改变目前机械制造系统的人工操作状态。 国内机械手主要用于机床加工、铸锻、热处理等方面,以减轻劳动强度,善作业条件。 随着社会生产不断进步和人们生活节奏的不断加快,机械手在工业制造、医学、服务、军事以及太空探索等领域都能得到广泛的运用。 可编程序控制器(PLC)是工业控制中应用广泛的控制器。 本项目通过对机械手的组装和 PLC 系统的编程,实现多轴机械手稳定的搬运工件。通过本项目的研制,研制人员提高了自主动手能力,掌握机电一体化综合设计技能,学习和掌握 PLC 语言的编写,且借此可以了解学习国内外机械手的发展水平。

1 总体部分
如图 1 所示,本项目研制的机械手教学实训设备的总体结构由机械部分和电气部分组成。
图 1 PLC 多轴机械手总体结构图

1.1 机械部分
机械手的机械部分总体结构由夹持部分、传动机构和旋转机构所组成。 (1)夹持部分使用机械夹手与真空吸盘相结合的结构夹持工件,可根据被夹持工件的形状和大小配备多种形状和尺寸的夹头和真空吸盘,以适应操作。 真空吸盘一般用橡胶制造,主要作用是将工件吸合便于搬运,大限度的保护工件的外观,还具有易使用、等优点;(2)传动机构由 XY 轴滚珠丝杠副组成,滚珠丝杠副传递力矩,完成工件在 XY 轴方向上的往复运动,其利用滚珠运动的原理可以具有较高的重复精度,实现运动的微进给,从而保证准确的将运送工件至地点;(3)旋转机构 Z 轴由底座和机械手所组成,旋转机构扩大了机械手的动作范围,提高了机械手在搬运过程中的灵活性。

1.2 电气部分
PLC 控制多轴机械手电气部分主要由变压器步进电机驱动器,直流电机驱动器,PLC 主机模块,控制面板等部分组成。 (1)变压器作用是把 220V 的交流电压转换为电机与 PLC 工作的 24V 直流电压;(2)X 轴 Y 轴直线运动由步进电机实现,步进电机能够达到比较高的重复定位精度。 步进电机驱动器将输入的电信号(或者脉冲信号)通过模数处理,转变为电机的步进运动与增量位移,控制机械运动;(3)机械手有两个旋转动作,分别是抓手轴的正反旋转和旋转底盘 Z 轴的正反旋转,其动作由直流无刷电机带动,可回旋 360°,无刷直流电机的驱动器采用 24V 直流供电,有起停及转向控制、过流、过压及堵转保护等特点;(4)控制面板开关主要分为自动和手动两种模式。 自动模式下,根据 PLC 的编程顺序进行各种动作并循环;手动模式主要是实现点动。 且控制面板上采用复合开关按钮,节约 PLC 输入点位;(5)PLC 采用了逐步通电、同步断电的步进式控制设计,受控对象之间形成互锁,动作的是否执行取决于步动作是否完成,若步未完成,则后一步无法执行。 具有编程简单、维修方便、柔性化强等特点,可在现场修改和调试程序,可根据生产要求随时改变。

2 控制要求
图 2 机械手动作示意图

图 2 为本机械手教学实训模型的动作示意图,其工作路径是将工件从 A 点搬运至 B 点。 机械手运行时,机械手要返回至设定的原点位置,之后通过 XY 轴的滚珠丝杠、底座和腕部的旋动至工件所在位置并夹持工件回到原点,然后将工件准确的运送至位置。


3 控制部分设计

基于控制要求,合理地分配 PLC 输入、输出点位。 如表 1 所示为 PLC 的输入输出各点位的分配。

表 1 I/O 分配表

 

先将机械手进行复位操作。 当机械手未到原位,此时 PLC 输入电平信号跟脉冲信号 CP-1 给步进电机横轴驱动器,连接横轴的步进电机反转,横轴往后缩,后缩到位后会碰到后限位开关 SQ3,SQ3 启动之后,主机就输入电平信号跟脉冲信号 CP-2 给竖轴驱动器,竖轴步进电机控制竖轴上升,上升到位后会触碰到竖轴反限位开关 SQ4,SQ4 启动之后,主机输入旋转脉冲信号 SB-0 给直流电机驱动器 3,4,完成机械手的复位动作即 YU21 和 YU22 的动作。 复位操作结束后,主机输入脉冲信号 CP-1 给横轴驱动器,步进电机开始正转,横轴实现进给操作 YV2,横轴进给到位时碰到正限位开关 SQ1,进给完成。 机械手收到主机发送电压信号,旋转至已定的角度,完成动作 YV20,这时气动电磁阀断电,机械手张开。主机再同时输入电平信号跟脉冲信号 CP-2 给竖轴驱动器使步进电机开始反转,竖轴下降。当竖轴下降至碰到限位开关时 SQ4,下降停止,电磁阀得电机械手夹紧。 夹紧后,主机只输入脉冲信号 CP-2 给竖轴步进电机驱动器,步进电机得电正转竖轴上升,碰到限位开关 SQ2 后,上升停止,启动横轴步进电机驱动器脉冲 CP-1,步进电机得电开始反转,横轴缩回。 碰到限位开关 SQ3 后,PLC 发送旋转脉冲信号 SB0给底盘,底盘正旋转到位。此时主机再次输入脉冲信号 CP-1 给横轴驱动器,横轴二次向前伸出,碰到限位开关 SQ1 后停止。 停止后主机输入电平和脉冲信号 CP-2 给竖轴驱动器 2 使得竖轴电机 2 反转使竖轴再次下降,下降到位碰到竖轴正限位开关 SQ2 停止,此时电磁阀断电,卡爪和真空吸盘放松,释放工件,完成整套的工件运送工作。本机械手实训装置采用的 PLC 具有高速运算能力和 PID 调节功能,同时可以输出两路脉冲控制两台电机的优点。 图 3 为控制输出两路脉冲梯形图,可以控制两个方向的电机同时运动,节省搬运时间。

  随着汽车制造技术的发展,焊接产品制造的自动化、柔性化与智能化成为必然的发展趋势。焊接机器人由于具有通用性强、工作的优点,越来越受到人们的重视,目前,机器人系统已在轿车生产中得到广泛应用。某汽车生产集团与唐山松下产业机器有限公司共同开发的桥壳生产线,替代了其原有的手工生产线,成为目前国内自动化程度的桥壳生产线之一。

生产线机器人系统的构成

该生产线主要用于轻型卡车车桥桥壳的生产,在选择生产线设备时,需要考虑的主要内容包括:

1、提高生产效率,满足用户生产要求,达到预期产量。

2、生产线柔性化,可实现短时间内在多个产品类型之间快速切换。

3、以高度自动化降低工人劳动强度,改善工作环境。

4、提升产品品质,增加用户产品在**业内的市场竞争力。

在生产线中主要采用了“Y”形焊缝/三角板内焊缝焊接机器人工作站、机器人等离子切割工作站和弹簧座/减震器支架/法兰盘焊接机器人工作站。


根据该工件焊缝布局,采用双机器人同时焊接,可有效提高焊接效率、保证焊接质量。该机器人工作站采用自动上、下料。作业时,待焊工件由工装板自动输送线流入相应的位置,移载机将工装板上壳体夹持住并移到焊接夹具上,夹具自动分中并两端定位,夹紧两端,双机器人系统开始自动焊接。焊接结束后,夹具松开,分中装置退回,移载机夹持住壳体并移载到工装板自动输送线相应的位置,经检测开关确认后,工装板自动输送线移动并输送至下一工序,一个循环结束。

电器控制系统

1、采用日本三菱FX2N系列作为控制;

2、系统配有人机交互界面(触摸屏为PRO FACE),能够完成工作类型选择、运行状态显示、系统信息显示、手动控制系统、紧急停止、报警解除等操作;

3、具有保护气压力异常、PLC异常等异常情况的声光报警功能;

4、主要由系统控制柜、操作盘(触摸屏)等构成。
为了保证系统稳定,PLC采用I/O与机器人进行信号交互和对系统夹具的控制,避免了外界干扰带来的影响。

机器人焊接与切割系统

机器人型号为Pana-Robot VR-006GⅡ,该型号具有6轴立关节,运动平滑灵活,效、性好,动作范围广泛。在业内采用装载bbbbbbs CE系统的控制器:大型液晶显示画面加清晰,中英文显示,配备IT通信接口,可联网,使用64位CPU处理速度快,通过选装多可控制27轴,标准存储容量大(可达40000点),并可以与的数字焊机通信,数字化设定焊接条件。、数字化的机器人焊接系统具有焊接品质监测功能(CO2/MAG焊接时)、焊接摆动功能(6种类型)、再引弧功能(CO2/MAG焊接时)、粘丝自动解除功能(CO2/MAG焊接时)、搭接功能、焊校正功能及其它扩展功能。“Y”形焊缝/三角板内焊缝焊接机器人工作站中,三台机器人全部采用天吊安装模式,大大节省了工作站的空间,使得整个系统加紧凑。

焊接电源的型号为YD-500RF2。唐山松下引进日本的控制技术,开发生产的微机控制逆变式CO2/MAG半自动焊机采用了IGBT逆变整流电路,控制精度高、焊接稳定性强,适合碳钢、低合金钢、不锈钢等金属材料的CO2/MAG气体保护焊工艺。

切割机的型号为YP-100PS。唐山松下引进日本松下的YP-100PS空气等离子切割机采用S.C.R(晶闸管)控制的空气等离子切割电源,额定负载持续达60%。其性能特点包括:

1、改进的新型割炬延长了割咀、电等易耗品的使用寿命;

2、切割口窄小,切断面光洁美观、无挂渣,切割速度快、效;

3、加有引导电弧电路,由非转移到转移弧的瞬间引弧性能优异;

4、可采用接触式或非接触式切割方式,可手工切割和沿着轨道进行自动化切割,操作简便、性能稳定,且切割精度高(非接触式切割接触式切割);

5、切割速度达10~330cm/min,钢板越薄,切割速度越快,当切割电流和切割速度达到配合时,切割口质量,效果。

机器人工作站特点

作为整条生产线的工位,这三台机器人工作站的特点得到充分发挥,其主要包括:

1、机器人工作站的无人化操作。通过机器人系统与动力滚道和移载机配合,实现了上料、焊接和下料的自动化。系统故障自诊断可通过声光报警及故障代码显示。

2、机器人工作站的柔性化。

(1)工装夹具结构简单、适用范围广,在简单调整夹具后可以适应用户的所有工件。

(2)工装夹具与安装支座连接标准化,以适应柔性生产的要求。

(3)换生产工件种类时,只需在触摸屏上选择相应的工件号即可,系统会自动调用相应的程序。

3、机器人工作站的性。

(1)采用全封闭式机器人防护房,配有烟尘净化装置。

(2)防护的门配有检测开关。在自动工作状态下,如果有人进入防护房内,机器人及变位机自动停止运转。
在桥壳生产过程中,松下机器人的应用于克服了以往手工焊接/切割中的不确定性因素对焊接/切割质量的影响,提高了产品质量和性,降低了工人劳动强度,改善了工作环境,并且实现了焊接参数的在线调整和焊缝质量的实时控制。由于采用了三机器人、双机器人协调同时焊接,焊接效率大幅提高,焊接变形也得到有效控制。

综上所述,机器人系统的应用为汽车制造业大批量、率、高质量进行流水线汽车制造提供了有利。近年来,随着中国汽车制造产业自动化流水线作业方式逐渐普及,松下机器人系统在国内汽车制造业的应用得到推广,尤其在机器人焊接领域,为国内汽车制造业提供了强有力的技术支持。未来,我们将不断学习技术,不断推出新产品,为中国汽车制造业的快速发展贡献自己的力量。



由于人工转动夹具,操作者在焊接时住夹具的作用力大小不同,会造成角板轴向定位存在误差。同时,整个操作过程操作者要重复转动多次,致使操作者劳动强度较高。种种问题影响了产品质量和生产效率,因此我们设计了一套半自动角板焊接夹具来解决上述问题。

根据机座角板焊接工序的特点,需要能够按要求重复转动固定的角度,故我们采用了伺服电机来控制焊接时的转动角度。伺服电机带有信号反馈,精度高,并且能提供足够的转矩带动夹具的转动。同时,使用单轴数控系统控制伺服驱动器,利用单轴数控系统的编程功能,我们编制出一套程序来模拟人工焊接时的动作顺序,实现了焊接自动化。为了保证焊接质量,我们设计了角板焊接座,用来安放夹具,实现分度转动、上下浮动、卸料等功能。从而较好地解决了半自动角板焊接夹具与凸焊机的接口,大化地利用了原有的设备。

系统硬件设计

1、系统组成

系统的组成以及运行流程。

2、角板焊接座

角板焊接座的作用是加载并转动工件,提供一个浮动平台,由伺服电机通过焊接座的齿轮副来控制转动角度。焊接座通过弹簧、导套和导柱能上下浮动,在转动时脱开内电,焊接时压紧内电,从而避免夹具转动时的擦碰,能有效提高焊接质量。与焊接座配套使用的是在原有手工焊接夹具基础上改进的夹具,它的作用是固定机壳和角板的相对位置。在焊接座上,我们采用带磁钢的吸盘来吸住焊接夹具,代替人工的手压动作,以保证焊接时夹具不致脱落,避免角板轴向尺寸偏差。为了卸料的需要,我们还在焊接座上安装了卸料机构,它通过两个气缸联接一个卸料环推动焊接夹具脱离带有磁钢的吸盘,完成卸料。

3、伺服系统

伺服电机具有转矩大、精度高、可反馈的特点,可根据脉冲数来控制转动角度和转速。我们选用了上海开通数控有限公司的110HM-8M04030-F 伺服电机,它体积紧凑,转矩达到4N.m。

交流伺服驱动系统是控制伺服电机的装置,我们选用与电机相匹配的KT270全数字交流驱动系统。它采用DSP(数字信号处理器)芯片,加快了数据采集和处理速度,使电机运行性能良好。同时,它能够直接在驱动器面板上设置参数、调试、监视系统状态,外观简洁,结构紧凑。

单轴数控系统KT700B在整个系统中相当于PLC的功能。它具有输入输出功能,自带液晶屏和键盘,可以直接在线编程控制和在线监控。通过它进行编程模拟人工操作步骤,可控制半自动角板焊接夹具。

4、电气系统和气动系统

主要用来控制输入和输出讯号,与凸焊机接口联接控制执行机构运行位置。

系统软件设计

1、系统参数设置

(1)交流伺服驱动器的设置

设置显示状态为监视运行状态;设置控制模式为位置控制模式,以控制伺服电机输出轴的位置;为了使转动加平稳,设置适当的加减速时间;设置保护限制,比如转速、转矩等,以避免异常情况出现导致系统受损;建立工艺文件记录报警参数,及时了解系统的故障模式,采取应对措施。

(2)单轴控制器的设置

根据系统的试运行状况,调整各参数,使其运行稳定;设定系统参数,定义编程用常量、参考点;设置电子齿轮比,通过设置可以将夹具实际转动与脉冲数建立相应关系,便于控制;设定系统值,确保系统稳定。

2、程序编写

程序编写是基于单轴控制器提供的数控指令编写的。指令采用顺序排列,根据人工操作时的顺序,编写程序。用SET指令接受输出信号,用WAT指令接受输入信号。SPEED指令控制速度,POS指令控制位置与角度。此外,还可以采用CALL 调用指令,循环执行相似的命令。

试运行发现的问题及解决方案

系统组建好后,进行试生产。运行过程符合设计要求,并按照人工焊接的顺序执行,定位准确。同时,系统可根据实际生产要求,调整运行速度,满足生产节拍的要求。但在实际的操作中发现:夹具与焊接座的制造以及装配质量对系统的稳定运行影响很大。因此,我们对夹具进行了优化,并在装配时进行适当的调整。

起初,夹具易被压翘头,导致焊接后产品尺寸偏差大。我们在凸焊机上增加了预压装置,在焊接前先将焊接座压实,同时增加了护套以提高焊接座的刚度。然而,运行一段时间后发现,工件难以脱离夹具。于是,我们重新修整夹具,调整凸焊机上电的位置,使焊接时工件受力均匀,不会使工件偏移卡死夹具导致难以脱出。同时,调整卸料气缸的压力以及卸料环与焊接座的间隙,使气缸出时加顺畅。卸料气缸在卸料时,弹力很大,容易造成夹具弹出时使操作者受伤,同时损坏夹具。我们在工作台上设置了缓冲板,夹具在弹出后,先接触缓冲板减速,提高了系统的性。

经过一段时间的试运行,角板焊接夹具系统能够按照预定要求,完成整个工作任务。生产出的产品质量符合设计要求,并且避免了人为因素的干扰,降低了操作者的劳动强度。在焊接夹具工作时,操作者可以腾出手进行下一个工件的装配,提高了生产效率。结合伺服系统的应用,将机电一体化技术应用到实际生产中,能够给我们带来多的便利,创造大的经济效益。数控机床电气控制系统除了CNC装置(包括主轴驱动和进给驱动的伺服系统)外,还包括机床强电控制系统。机床强电控制系统主要是由普通交流电动机的驱动和机床电器逻辑控制装置PLC及操作盘等部分构成。这里简单介绍机床强电控制系统中普通继电接触器控制系统和PLC可编程控制器的维护与保养。


1 普通继电接触器控制系统的维护与保养

   数控机床除了CNC系统外,对于经济型数控机床则还有普通继电接触器控制系统。其维护与保养工作,则主要是如何采取措施防止强电柜中的接触器、继电器的强电磁干扰的问题。数控机床的强电柜中的接触器、继电器等电磁部件均是CNC系统的干扰源。由于交流接触器,交流电机的频繁起动、停  止时,其电磁感应现象会使CNC系统控制电路中产生尖峰或波涌等噪声,干扰系统的正常工作。因此,一定要对这些电磁干扰采取措施,予以。例如,对于交流接触器线圈,则在其两端或交流电机的三相输入端并联RC网络来抑制这些电器产生的干扰噪声。此外,要注意防止接触器、继电器触头的氧化和触头的接触不良等。

2 PLC可编程控制器的维护与保养 

   PLC可编程控制器也是数控机床上重要的电气控制部分。数控机床强电控制系统除了对机床辅助运动和辅助动作控制外,还包括对保护开关、各种行程和限开关的控制。在上述过程中,PLC可编程控制器可代替数控机床上强电控制系统中的大部分机床电器,从而实现对主轴、换、润滑、冷却、液压、气动等系统的逻辑控制。PLC可编程控制器与数控装置合为一体时则构成了内装式PLC,而位于数控装置以外时则构成了立式PLC。由于PLC的结构组成与数控装置有相似之处,所以其维护与保养可参照数控装置的维护与保养。



http://zhangqueena.b2b168.com

产品推荐