产品描述
西门子模块6ES7214-1BD23-0XB8库存
3 控制部分设计
基于控制要求,合理地分配 PLC 输入、输出点位。 如表 1 所示为 PLC 的输入输出各点位的分配。
表 1 I/O 分配表
先将机械手进行复位操作。 当机械手未到原位,此时 PLC 输入电平信号跟脉冲信号 CP-1 给步进电机横轴驱动器,连接横轴的步进电机反转,横轴往后缩,后缩到位后会碰到后限位开关 SQ3,SQ3 启动之后,主机就输入电平信号跟脉冲信号 CP-2 给竖轴驱动器,竖轴步进电机控制竖轴上升,上升到位后会触碰到竖轴反限位开关 SQ4,SQ4 启动之后,主机输入旋转脉冲信号 SB-0 给直流电机驱动器 3,4,完成机械手的复位动作即 YU21 和 YU22 的动作。 复位操作结束后,主机输入脉冲信号 CP-1 给横轴驱动器,步进电机开始正转,横轴实现进给操作 YV2,横轴进给到位时碰到正限位开关 SQ1,进给完成。 机械手收到主机发送电压信号,旋转至已定的角度,完成动作 YV20,这时气动电磁阀断电,机械手张开。主机再同时输入电平信号跟脉冲信号 CP-2 给竖轴驱动器使步进电机开始反转,竖轴下降。当竖轴下降至碰到限位开关时 SQ4,下降停止,电磁阀得电机械手夹紧。 夹紧后,主机只输入脉冲信号 CP-2 给竖轴步进电机驱动器,步进电机得电正转竖轴上升,碰到限位开关 SQ2 后,上升停止,启动横轴步进电机驱动器脉冲 CP-1,步进电机得电开始反转,横轴缩回。 碰到限位开关 SQ3 后,PLC 发送旋转脉冲信号 SB0给底盘,底盘正旋转到位。此时主机再次输入脉冲信号 CP-1 给横轴驱动器,横轴二次向前伸出,碰到限位开关 SQ1 后停止。 停止后主机输入电平和脉冲信号 CP-2 给竖轴驱动器 2 使得竖轴电机 2 反转使竖轴再次下降,下降到位碰到竖轴正限位开关 SQ2 停止,此时电磁阀断电,卡爪和真空吸盘放松,释放工件,完成整套的工件运送工作。本机械手实训装置采用的 PLC 具有高速运算能力和 PID 调节功能,同时可以输出两路脉冲控制两台电机的优点。 图 3 为控制输出两路脉冲梯形图,可以控制两个方向的电机同时运动,节省搬运时间。
随着汽车制造技术的发展,焊接产品制造的自动化、柔性化与智能化成为必然的发展趋势。焊接机器人由于具有通用性强、工作的优点,越来越受到人们的重视,目前,机器人系统已在轿车生产中得到广泛应用。某汽车生产集团与唐山松下产业机器有限公司共同开发的桥壳生产线,替代了其原有的手工生产线,成为目前国内自动化程度的桥壳生产线之一。
生产线机器人系统的构成
该生产线主要用于轻型卡车车桥桥壳的生产,在选择生产线设备时,需要考虑的主要内容包括:
1、提高生产效率,满足用户生产要求,达到预期产量。
2、生产线柔性化,可实现短时间内在多个产品类型之间快速切换。
3、以高度自动化降低工人劳动强度,改善工作环境。
4、提升产品品质,增加用户产品在**业内的市场竞争力。
在生产线中主要采用了“Y”形焊缝/三角板内焊缝焊接机器人工作站、机器人等离子切割工作站和弹簧座/减震器支架/法兰盘焊接机器人工作站。
根据该工件焊缝布局,采用双机器人同时焊接,可有效提高焊接效率、保证焊接质量。该机器人工作站采用自动上、下料。作业时,待焊工件由工装板自动输送线流入相应的位置,移载机将工装板上壳体夹持住并移到焊接夹具上,夹具自动分中并两端定位,夹紧两端,双机器人系统开始自动焊接。焊接结束后,夹具松开,分中装置退回,移载机夹持住壳体并移载到工装板自动输送线相应的位置,经检测开关确认后,工装板自动输送线移动并输送至下一工序,一个循环结束。
电器控制系统
1、采用日本三菱FX2N系列作为控制;
2、系统配有人机交互界面(触摸屏为PRO FACE),能够完成工作类型选择、运行状态显示、系统信息显示、手动控制系统、紧急停止、报警解除等操作;
3、具有保护气压力异常、PLC异常等异常情况的声光报警功能;
4、主要由系统控制柜、操作盘(触摸屏)等构成。
为了保证系统稳定,PLC采用I/O与机器人进行信号交互和对系统夹具的控制,避免了外界干扰带来的影响。
机器人焊接与切割系统
机器人型号为Pana-Robot VR-006GⅡ,该型号具有6轴立关节,运动平滑灵活,效、性好,动作范围广泛。在业内采用装载bbbbbbs CE系统的控制器:大型液晶显示画面加清晰,中英文显示,配备IT通信接口,可联网,使用64位CPU处理速度快,通过选装多可控制27轴,标准存储容量大(可达40000点),并可以与的数字焊机通信,数字化设定焊接条件。、数字化的机器人焊接系统具有焊接品质监测功能(CO2/MAG焊接时)、焊接摆动功能(6种类型)、再引弧功能(CO2/MAG焊接时)、粘丝自动解除功能(CO2/MAG焊接时)、搭接功能、焊校正功能及其它扩展功能。“Y”形焊缝/三角板内焊缝焊接机器人工作站中,三台机器人全部采用天吊安装模式,大大节省了工作站的空间,使得整个系统加紧凑。
焊接电源的型号为YD-500RF2。唐山松下引进日本的控制技术,开发生产的微机控制逆变式CO2/MAG半自动焊机采用了IGBT逆变整流电路,控制精度高、焊接稳定性强,适合碳钢、低合金钢、不锈钢等金属材料的CO2/MAG气体保护焊工艺。
切割机的型号为YP-100PS。唐山松下引进日本松下的YP-100PS空气等离子切割机采用S.C.R(晶闸管)控制的空气等离子切割电源,额定负载持续达60%。其性能特点包括:
1、改进的新型割炬延长了割咀、电等易耗品的使用寿命;
2、切割口窄小,切断面光洁美观、无挂渣,切割速度快、效;
3、加有引导电弧电路,由非转移到转移弧的瞬间引弧性能优异;
4、可采用接触式或非接触式切割方式,可手工切割和沿着轨道进行自动化切割,操作简便、性能稳定,且切割精度高(非接触式切割接触式切割);
5、切割速度达10~330cm/min,钢板越薄,切割速度越快,当切割电流和切割速度达到配合时,切割口质量,效果。
机器人工作站特点
作为整条生产线的工位,这三台机器人工作站的特点得到充分发挥,其主要包括:
1、机器人工作站的无人化操作。通过机器人系统与动力滚道和移载机配合,实现了上料、焊接和下料的自动化。系统故障自诊断可通过声光报警及故障代码显示。
2、机器人工作站的柔性化。
(1)工装夹具结构简单、适用范围广,在简单调整夹具后可以适应用户的所有工件。
(2)工装夹具与安装支座连接标准化,以适应柔性生产的要求。
(3)换生产工件种类时,只需在触摸屏上选择相应的工件号即可,系统会自动调用相应的程序。
3、机器人工作站的性。
(1)采用全封闭式机器人防护房,配有烟尘净化装置。
(2)防护的门配有检测开关。在自动工作状态下,如果有人进入防护房内,机器人及变位机自动停止运转。
在桥壳生产过程中,松下机器人的应用于克服了以往手工焊接/切割中的不确定性因素对焊接/切割质量的影响,提高了产品质量和性,降低了工人劳动强度,改善了工作环境,并且实现了焊接参数的在线调整和焊缝质量的实时控制。由于采用了三机器人、双机器人协调同时焊接,焊接效率大幅提高,焊接变形也得到有效控制。
综上所述,机器人系统的应用为汽车制造业大批量、率、高质量进行流水线汽车制造提供了有利。近年来,随着中国汽车制造产业自动化流水线作业方式逐渐普及,松下机器人系统在国内汽车制造业的应用得到推广,尤其在机器人焊接领域,为国内汽车制造业提供了强有力的技术支持。未来,我们将不断学习技术,不断推出新产品,为中国汽车制造业的快速发展贡献自己的力量。
由于人工转动夹具,操作者在焊接时住夹具的作用力大小不同,会造成角板轴向定位存在误差。同时,整个操作过程操作者要重复转动多次,致使操作者劳动强度较高。种种问题影响了产品质量和生产效率,因此我们设计了一套半自动角板焊接夹具来解决上述问题。
根据机座角板焊接工序的特点,需要能够按要求重复转动固定的角度,故我们采用了伺服电机来控制焊接时的转动角度。伺服电机带有信号反馈,精度高,并且能提供足够的转矩带动夹具的转动。同时,使用单轴数控系统控制伺服驱动器,利用单轴数控系统的编程功能,我们编制出一套程序来模拟人工焊接时的动作顺序,实现了焊接自动化。为了保证焊接质量,我们设计了角板焊接座,用来安放夹具,实现分度转动、上下浮动、卸料等功能。从而较好地解决了半自动角板焊接夹具与凸焊机的接口,大化地利用了原有的设备。
系统硬件设计
1、系统组成
系统的组成以及运行流程。
2、角板焊接座
角板焊接座的作用是加载并转动工件,提供一个浮动平台,由伺服电机通过焊接座的齿轮副来控制转动角度。焊接座通过弹簧、导套和导柱能上下浮动,在转动时脱开内电,焊接时压紧内电,从而避免夹具转动时的擦碰,能有效提高焊接质量。与焊接座配套使用的是在原有手工焊接夹具基础上改进的夹具,它的作用是固定机壳和角板的相对位置。在焊接座上,我们采用带磁钢的吸盘来吸住焊接夹具,代替人工的手压动作,以保证焊接时夹具不致脱落,避免角板轴向尺寸偏差。为了卸料的需要,我们还在焊接座上安装了卸料机构,它通过两个气缸联接一个卸料环推动焊接夹具脱离带有磁钢的吸盘,完成卸料。
3、伺服系统
伺服电机具有转矩大、精度高、可反馈的特点,可根据脉冲数来控制转动角度和转速。我们选用了上海开通数控有限公司的110HM-8M04030-F 伺服电机,它体积紧凑,转矩达到4N.m。
交流伺服驱动系统是控制伺服电机的装置,我们选用与电机相匹配的KT270全数字交流驱动系统。它采用DSP(数字信号处理器)芯片,加快了数据采集和处理速度,使电机运行性能良好。同时,它能够直接在驱动器面板上设置参数、调试、监视系统状态,外观简洁,结构紧凑。
单轴数控系统KT700B在整个系统中相当于PLC的功能。它具有输入输出功能,自带液晶屏和键盘,可以直接在线编程控制和在线监控。通过它进行编程模拟人工操作步骤,可控制半自动角板焊接夹具。
4、电气系统和气动系统
主要用来控制输入和输出讯号,与凸焊机接口联接控制执行机构运行位置。
系统软件设计
1、系统参数设置
(1)交流伺服驱动器的设置
设置显示状态为监视运行状态;设置控制模式为位置控制模式,以控制伺服电机输出轴的位置;为了使转动加平稳,设置适当的加减速时间;设置保护限制,比如转速、转矩等,以避免异常情况出现导致系统受损;建立工艺文件记录报警参数,及时了解系统的故障模式,采取应对措施。
(2)单轴控制器的设置
根据系统的试运行状况,调整各参数,使其运行稳定;设定系统参数,定义编程用常量、参考点;设置电子齿轮比,通过设置可以将夹具实际转动与脉冲数建立相应关系,便于控制;设定系统值,确保系统稳定。
2、程序编写
程序编写是基于单轴控制器提供的数控指令编写的。指令采用顺序排列,根据人工操作时的顺序,编写程序。用SET指令接受输出信号,用WAT指令接受输入信号。SPEED指令控制速度,POS指令控制位置与角度。此外,还可以采用CALL 调用指令,循环执行相似的命令。
试运行发现的问题及解决方案
系统组建好后,进行试生产。运行过程符合设计要求,并按照人工焊接的顺序执行,定位准确。同时,系统可根据实际生产要求,调整运行速度,满足生产节拍的要求。但在实际的操作中发现:夹具与焊接座的制造以及装配质量对系统的稳定运行影响很大。因此,我们对夹具进行了优化,并在装配时进行适当的调整。
起初,夹具易被压翘头,导致焊接后产品尺寸偏差大。我们在凸焊机上增加了预压装置,在焊接前先将焊接座压实,同时增加了护套以提高焊接座的刚度。然而,运行一段时间后发现,工件难以脱离夹具。于是,我们重新修整夹具,调整凸焊机上电的位置,使焊接时工件受力均匀,不会使工件偏移卡死夹具导致难以脱出。同时,调整卸料气缸的压力以及卸料环与焊接座的间隙,使气缸出时加顺畅。卸料气缸在卸料时,弹力很大,容易造成夹具弹出时使操作者受伤,同时损坏夹具。我们在工作台上设置了缓冲板,夹具在弹出后,先接触缓冲板减速,提高了系统的性。
经过一段时间的试运行,角板焊接夹具系统能够按照预定要求,完成整个工作任务。生产出的产品质量符合设计要求,并且避免了人为因素的干扰,降低了操作者的劳动强度。在焊接夹具工作时,操作者可以腾出手进行下一个工件的装配,提高了生产效率。结合伺服系统的应用,将机电一体化技术应用到实际生产中,能够给我们带来多的便利,创造大的经济效益。数控机床电气控制系统除了CNC装置(包括主轴驱动和进给驱动的伺服系统)外,还包括机床强电控制系统。机床强电控制系统主要是由普通交流电动机的驱动和机床电器逻辑控制装置PLC及操作盘等部分构成。这里简单介绍机床强电控制系统中普通继电接触器控制系统和PLC可编程控制器的维护与保养。
数控机床除了CNC系统外,对于经济型数控机床则还有普通继电接触器控制系统。其维护与保养工作,则主要是如何采取措施防止强电柜中的接触器、继电器的强电磁干扰的问题。数控机床的强电柜中的接触器、继电器等电磁部件均是CNC系统的干扰源。由于交流接触器,交流电机的频繁起动、停 止时,其电磁感应现象会使CNC系统控制电路中产生尖峰或波涌等噪声,干扰系统的正常工作。因此,一定要对这些电磁干扰采取措施,予以。例如,对于交流接触器线圈,则在其两端或交流电机的三相输入端并联RC网络来抑制这些电器产生的干扰噪声。此外,要注意防止接触器、继电器触头的氧化和触头的接触不良等。
PLC可编程控制器也是数控机床上重要的电气控制部分。数控机床强电控制系统除了对机床辅助运动和辅助动作控制外,还包括对保护开关、各种行程和限开关的控制。在上述过程中,PLC可编程控制器可代替数控机床上强电控制系统中的大部分机床电器,从而实现对主轴、换、润滑、冷却、液压、气动等系统的逻辑控制。PLC可编程控制器与数控装置合为一体时则构成了内装式PLC,而位于数控装置以外时则构成了立式PLC。由于PLC的结构组成与数控装置有相似之处,所以其维护与保养可参照数控装置的维护与保养。
产品推荐