7
西门子模块6ES7223-1PH22-0XA8库存
提高PLC自动控制系统性的方法,如下:
一、控制系统性降低的主要原因
虽然工业控制机和可编程技术'>控制器本身都具有很高的性,但如果输入给PLC的开关量信号出现错误,模拟量信号出现较大偏差,PLC输出口控制的执行机构没有按要求动作,这些都可能使控制过程出错,造成无法挽回的经济损失。影响现场输入给PLC信号出错的主要原因有:1、造成传输信号线短路或断路(由于机械拉扯,线路自身老化,连接处松脱等),当传输信号线出故障时,现场信号无法传送给PLC,造成控制出错。2、机械触点抖动,现场触点虽然只闭合一次,PLC却认为闭合了多次,虽然硬件加了滤波电路,软件增加微分指令,但由于PLC扫描周期太短,仍可能在计数、累加、移位等指令中出错,出现错误控制。3、现场变送器,机械开关自身出故障,如触点接触不良,变送器反映现场非电量偏差较大或不能正常工作等,这些故障同样会使控制系统不能正常工作。影响执行机构出错的主要原因有:
1、控制负载的接触不能动作,虽然PLC发出了动作指令,但执行机构并没按要求动作。
2、控制变频器起动,由于变频器自身故障,变频器所带电机并没按要求工作。
3、各种电动阀、电磁阀该开的没能打开,该关的没能关到位,由于执行机构没能按PLC的控制要求动作,使系统无法正常工作,降低了系统性。要提高整个控制系统的性,提高输入信号的性和执行机构动作的准确性,否则PLC应能及时发现问题,用声光等报警办法提示给操作人员,尽除故障,让系统、、正确地工作。
二、设计完善的故障报警系统
在自动控制系统的设计中我们设计了3级故障显示报警系统,1级设置在控制现场各控制柜面板,用指示灯指示设备正常运行和故障情况,当设备正常运行时对应指示灯亮,当该设备运行有故障时指示灯以1Hz的频率闪烁。为防止指示灯灯泡损坏不能正确反映设备工作情况,专门设置了故障复位/灯测试按钮,系统运行任何时间持续按该按钮3s,所有指示灯应全部点亮,如果这时有指示等不亮说明该指示灯已坏,应立即换,改按钮复位后指示灯仍按原工作状态显示设备工作状态。2级故障显示设置在控制室大屏幕监视器上,当设备出现故障时,有文字显示故障类型,工艺流程图上对应的设备闪烁,历史事件表中将记录该故障。3级故障显示设置在控制室信号箱内,当设备出现故障时,信号箱将用声、光报警方式提示工作人员,及时处理故障。在处理故障时,又将故障进行分类,有些故障是要求系统停止运行的,但有些故障对系统工作影响不大,系统可带故障运行,故障可在运行中排除,这样就大大减少整个系统停止运行时间,提高系统性运行水平。
三、输入信号性研究
要提高现场输入给PLC信号的性,要选择性较高的变送器和各种开关,防止各种原因引起传送信号线短路、断路或接触不良。其次在程序设计时增加数字滤波程序,增加输入信号的可信性。数字信号滤波可采用如下程序设计方法,在现场输入触点后加一定时器,定时时间根据触点抖动情况和系统要的响应速度确定,一般在几十ms,这样可保证触点确实稳定闭合后,才有其它响应。
模拟信号滤波可采用如下程序设计方法,对现场模拟信号连续采样3次,采样间隔由A/D转换速度和该模拟信号变化速率决定。3次采样数据分别存放在数据寄存器DT10、DT11、DT12中,当后1次采样结束后利用数据比较、数据交换指令、数据段比较指令去掉大和小值,保留中间值作为本次采样结果存放在数据寄存器DT0中。
在实际应用之中,工具情况还以延长采样的次数,以达到较好的效果。提高读入PLC现场信号的性还可利用控制系统自身特点,利用信号之间关系来判断信号的可信程度。如进行液位控制,由于储罐的尺寸是已知的,进液或出液的阀门开度和压力是已知的,在一定时间里罐内液体变化高度大约在什么范围是知道的,如果这时液位计送给PLC的数据和估算液位高度相差较大,判断可能是液位计故障,通过故障报警系统通知操作人员该液位计。
又如各储罐有上下液位限保护,当开关动作时发出信号给PLC,这个信号是否真实,在程序设计时我们将这信号和该罐液位计信号对比,如果液位计读数也在限位置,说明该信号是真实的;如果液位计读数不在限位置,判断可能是液位限开关故障或传送信号线路故障,同样通过报警系统通知操作人员处理该故障。由于在程序设计时采用了上述方法,大大提高了输入信号的。
四、执行机构性研究
当现场的信号准确地输入给PLC后,PLC执行程序,将结果通过执行机构对现场装置进行调节、控制。怎样保证执行机构按控制要求工作,当执行机构没有按要求工作,怎样发现故障?我们采取以下措施:当负载由接触器控制时,启动或停止这类负载转为对接触器线圈控制,启动时接触器是否吸合,停止时接触器是否释放,这是我们关心的。
我们设计了如下程序来判断接触器是否动作。X0为接触器动作条件,Y0为控制线圈输出,X1为引回到PLC输入端的接触器辅助常开触点,定时器定时时间大于接触器动作时间。R0为设定的故障位,R0为ON表示有故障,做报警处理;R0为OFF表示无故障。故障具有记忆功能,由故障复位按钮。
当开启或关闭电动阀门时,根据阀门开启、关闭时间不同,设置延时时间,经过延时检测开到位或关到位信号,如果这些信号不能按时准确返回给PLC,说明阀可能有故障,做阀故障报警处理。程序设计如下所述。X2为阀门开启条件,Y1为控制阀动作输出,定时器定时时间大于阀开启到位时间,X3为阀到位返回信号,R1为阀故障位。另外,一般的开关输出都有中间继电器,多于比较重要的控制可以使用中间继电器的其他辅助触点向PLC反馈动作信息。
图1 定义配方
图2 创建和编辑配方
图3 读写配方指令
系统功能要求是根据系统目标结合具体内容确定的,特别具体项目的特点:
a、快速扫描的速度及顺序控制、联锁的执行周期,根据工艺指标提出具体要求。例如:某用户的一个装置引进DCS时因承包商对商在顺序控制方面的需要不清楚,到组态设计时,发现这种DCS的速度和容量均不能满足工艺的要求,只好又购买了一套PLC,增加了投资。
b、目标在开发控制软件,则在控制功能上以及软件开发工具方面要侧重说明。
二、DCS的选型
1、机种选择原则
选择DCS机种是一项重要工作,由于DCS技术进步速度很快,集中新换代周期很短,过去由几个主要国外DCS厂家的时代已经过去,民族的DCS厂家发展成熟起来,目前已经占据了中国DCS市场的半壁江山,其性能、性和稳定性及优越的性价比得到了广大用户的认可,这是民族产业的骄傲。现在国内外主要DCS制造商有十几家,DCS采购一般采取招标方式,通常由用户(或招标公司)选择3-5家进行询价、招标,经过、及技术负责人综合评价和评比,后确定一个机种。DCS机种选择的因素很多,不能只从一次性投资多寡考虑。总结DCS机种选择的原则为:选择工程实力较强的公司,选择符合有经验的的主流机型,考虑DCS系统的性、稳定性和操作方便性,其次考虑DCS功能应满足“功能需要”的要求,具有水平(但不一定是的),系统应具有开放式结构,有灵活的系统可扩性。考察是否又在**业使用的实例,效果是否令人满意,制造厂家的后备支持系统是否完备,调查厂家工程经验和实施能力、化解决方案的能力和设计能力,服务是否良好,性能/价格比是否,价格是否可以接受,备件供应和响应是否及时。一个工厂企业DCS机种选择同一种,便于维护和管理。
2、机种的评价内容
(1)系统硬件构成比较:将参加询价的3-5家机种做硬件配置和功能比较,主要项目如下:操作站、工程师站、打印机、上位机接口、辅助存储器、网络和内部通信、现场控制器、现场监视站、辅助台柜(栅柜、端子柜、继电器柜、辅助操作台等)、应用模块及电源配备。
(2)I/O卡能力比较(每项列出:点数/卡、卡数、总点数):
监视输入4~20mA
脉冲
T/C
RTD
控制输入4~20mA
脉冲
T/C
RTD
控制输出4~20mA
D/I按钮、开关状态
D/O开关、继电器输出
(3)系统通信功能比较:通信规程的标准化、开放型及功能,通信网络(总线)、通信速度、传递距离、网络(总线)允许加载设备总台数,是否双重化。
一、系统功能需求的确定
选用DCS之前要明确应用的目标,提出对DCS功能的要求,确定系统的规模。一般都需要仪表自动化、工艺负责人及计算机的负责人、设计院项目负责人几方面讨论确定,以达到大限度地满足生产和操作的要求。
1、应用DCS的目标
(1)提高装置生产及管理水平
提高生产效率(提高收效),降低生产成本,节能,降耗,提高产品质量,提高生产方案变化的灵活性及适应性,提高装置的管理水平,提高故障分析的科学性和生产管理标准化,有利于劳动竞赛,挖掘生产潜力。
(2)提高装置的控制水平
实现装置稳定化控制及操作优化,实现控制,实现顺序逻辑控制,实现设备故障诊断和联锁保护,实现局部或全装置的优化控制,生产及管理水平的提高,控制水平的提高,将为实现装置“安、稳、长、满、优”生产发挥重要作用,具有显著的经济效益和社会效益。
这些目标可以分阶段考虑,逐步应用、开发,系统亦将逐步扩展以实现终目标。
2、系统功能要求
(1)数据采集和存储功能:模拟输入信号的扫描时间,数字信号的扫描时间,历史数据存储(包括调整趋势、历史趋势)的种类、点数和周期,输入信号的处理功能。
(2)控制功能:具备完整的监测、调节和顺序控制功能及设备运行监视、联锁保护等功能,反馈控制功能的大能力(输入输出的种类、数量、逻辑运算能力、顺序步骤,执行周期),过程控制语言能力(如ST、FORTRAN,BASIC,C或其他的控制语言),控制软件的要求。
(3)显示功能:CRT尺寸、颜色,画面刷新时间,画面种类与数量。显示画面包括总貌画面、流程图画面、控制分组画面、调整画面、趋势画面、过程报警画面、系统报警画面、系统状态画面、操作日志画面、历史查询画面等,并具有窗口(多个、拉伸、重叠)显示功能,汉字功能以及触屏功能。
(4)报警功能:模拟输入/输出信号报警(报警、变化率报警),数字输入/输出信号报警,仪表停用(校验、停扫描)报警,系统部件(卡件、网络)故障报警,相邻报警时间分辨率,报警管理功能(如历史查询过滤、报警组设置、报警点组的级、报警抑制功能等)。
(5)报表和屏幕拷贝功能:即时报表功能,定时报表功能(包括时报、班报、日报、月报、年报),报警汇总记录,操作记录报表,操作或参数修改打印,打印机屏幕拷贝功能。
(6)操作:操作权限口令询问功能,工程师、操作员钥匙键功能,MAN/AUT/CAS切换无扰动功能,冗余措施。
(7)系统的灵活性:系统性指标,冗余冗错,系统扩展方便,新老产品的兼容性,与上位机通信接口及软件的实用性,与其它机种的通信(开放性)。



“信息化带动工业化,工业化促进信息化”是中国的国策。石油和化工企业的信息化分为三层结构:层以PCS(ProcessControlSystem,过程控制系统)为代表的生产过程基础自动化层,二层以MES(ManufacturingExecutionSystem,制造执行系统)为代表的生产过程运行优化层,三层以ERP(EnterpriseResourcePlanning,企业资源计划)为代表的生产过程经营优化层。
本文针对层(PCS)浅谈DCS(DistributedControlSystem,集散控制系统或分散控制系统)、FCS(Field-busControlSystem,现场总线控制系统)的应用和发展。
1.DCS的应用和发展
DCS自20世纪70年代问世以来,经过几代技术变迁和新发展,现已广泛应用于各个行业,其中石油和化工企业的应用为普及,技术改造项目用DCS,新建项目用DCS。在石油和化工企业有用DCS逐步替代常规仪表控制系统的发展趋势。
DCS应用之所以如此普遍,究其原因它有以下一系列的特点和优点:
①分散性:其含义是指分散控制、地域分散、设备分散、功能分散和危险分散。硬件积木化和软件模块化是分散性的具体体现。目的是为了使危险分散,进而提高系统的性和性。
②集中性:其含义是指集中监视、操作和管理。用通信网络把分散的设备构成统一的整体,用分布式数据库实现全系统的信息集成,进而达到信息共享。人们可以同时在多台操作站上集中监视、操作和管理。
③自治性:其含义是指系统中的各台设备均可立地工作。控制站自主地进行输入、运算、控制和输出,操作员站自主地实现监视、操作和管理,工程师站可以在线或离线组态。
④协调性:其含义是指系统中的各台设备用通信网络和数据库互连在一起,相互传送信息,相互协调工作,以实现系统的总体功能。DCS的分散和集中、自治和协调不是互相对立,而是互相。
⑤灵活性和扩展性:硬件采用积木式结构,可以灵活地配置成小、中、大各类系统,并可以根据企业的发展逐步扩展系统。软件采用模块式结构,提供输入、输出、运算和控制功能块,可以灵活地组态构成简单、复杂各类控制系统,并可以根据生产工艺流程的改变,随时修改控制方案。
⑥性和适应性:分散性带来系统的性,并采用一系列冗余技术、热拔插技术、故障诊断和故障屏蔽技术。采用的元器件、的制造工艺和抗干扰技术,使DCS能够适应恶劣的工作环境。
⑦性和继承性:硬件上采用的计算机、通信网络和人机接口;软件上采用的操作系统、数据库、网络管理和控制语言;控制算法上采用自适应、预测、推理、优化等控制技术。DCS新换代比较快,继承性体现在新、老系统互相兼容,可以给用户的利益。
DCS随着计算机、控制、网络通信、组态软件、信息集成和数据库技术的发展而不断新和发展,主要体现在以下几个方面:
①信息化:DCS已从单一的控制系统,发展为制和管理于一体的综息系统。DCS提供了从生产现场到车间,再从工厂到公司,后到企业集团的整个信息通道,充分体现了信息的性、准确性和实时性。
②集成化:DCS已从单一封闭系统,发展为集成各类PLC、工业PC、数字化仪表和设备,甚至不同型号DCS可以互相集成和信息共享,为终用户提供集成化综合系统。
③智能化:随着人工智能、系统、自适应、预测和推理等控制技术的发展和应用,DCS也适时地融合这些新技术,实现的智能化控制功能。
④开放式网络:DCS已从单一封闭网络,发展为开放式网络系统,通过互联网技术和IE浏览器,可以访问过程画面、查询数据、管理调度和指挥生产。开放式网络的关键是网络,传统DCS采用软件防火墙,现代DCS不仅有软件防火墙,而且有硬件防火墙,既保网络开放,又保证监控层的实时性。例如,Honeywell公司的ExperionPKSR300的控制站采用硬件防火墙技术。
⑤容错以太网(FTE):传统DCS用两条立网络(A,B)实现冗余,两台设备之间只有一条通信路径,其本质是单条网络运行,故障时整条网络切换(A到B或B到A),切换时间长,性低。现代DCS用容错以太网(FTE,FaultTolerantEthernet),如图1所示。
图1中交换机S1~S6互相连接,其中S1和S2为上层,S3~S6为下层,每台设备(D1~D4)同时连接两台下层交换机,任意两台设备之间有4条通信路径,其本质是多条网络运行。例如,设备D1和D4之间的4条通信路径分别为D1→S3→S1→S5→D4,D1→S3→S1→S2→S6→D4,D1→S4→S2→S1→S5→D4,D1→S4→S2→S6→D4。故障时只需切换路径,切换时间短,性高。例如,Honeywell公司的ExperionPKSR300采用此FTE技术,FTE设备节点之间网络带宽可达200Mbps,交换机之间可达1Gbps。
点击此处查看全部新闻图片
图1容错以太网(FTE)
⑥无线网络技术:支持手持移动无线操作站,将无线技术与控制技术融为一体,进行现场操作监控、故障处理和仪表校验,实现操作与维护的无缝集成。例如,Honeywell公司的ExperionPKSR300采用此无线网络技术。
⑦数字视频技术:通过摄像头现场图像信息,再通过图像识别软件,进行图像处理,发现异常图像,立即发出报警信号,具有自动录像和录像回放功能,便于事故分析,并将数字视频技术与操作软件融为一体。例如,Honeywell公司的ExperionPKSR300采用此数字视频技术。
⑧控制站:DCS的基础是控制站,为了进一步提高控制站的性、稳定性和性,增强控制站的功能,而采用了一系列技术。例如,控制站采用无底板模块结构,立倾斜式垂直插拔,散热效果好,接线维护方便;采用容错以太网(FTE),硬件控制防火墙(冗余),冗余控制器、冗余I/O、冗余电源、冗余现场总线接口;采用的预估控制算法,鲁棒性好,具有参数自整定功能。Honeywell公司的ExperionPKSR300控制站是上述控制站的代表之一,如图2所示。
FCS是一种新型的分布式网络控制系统,它既是现场通信网络系统,也是现场自动化系统。它作为一种现场通信网络系统,具有开放式数字通信功能,可与各种通信网络互连。它作为一种现场自动化系统,把安装于生产现场的具有输入、输出、运算、控制和通信功能的各种现场仪表作为现场总线的节点,并直接在现场总线上构成分散的控制回路。
点击此处查看全部新闻图片
FCS代表当今控制技术和DCS的发展方向,并以进入工业化应用阶段。人们对FCS有各种评论,既有对新技术的赞尝,也有对现状的困惑。尽管众说纷纭,笔者认为,目前是FCS和DCS并存,FCS作为DCS框架下的重要分支应用发展,略表以下个人之见:
①FCS的变革:不仅变革了传统的单一功能的模拟仪表,将其改为综合功能的数字仪表;而且变革了传统DCS的控制站,将输入、输出、运算和控制功能分散分布到现场总线仪表中,在现场总线上构成控制回路,形成了全数字的的分散控制系统。
②FCS的特点:具有系统的分散性、系统的开放性、产品的互操作性、环境的适应性、维护的简易性、系统的性和使用的经济性这7个方面的特点或优点。
有人对“使用的经济性”有异议,这是正常的暂时现象,其原因是FCS尚未进入大批量应用阶段,现场总线仪表及辅助设备价格偏高。随着FCS的推广应用,技术进步,市场竞争,优胜劣汰,FCS的经济性将会显现。回想当年,DCS也是如此,现在人们已接收了DCS。
③FCS的应用:典型工业应用实例是上海赛科(SECCO)90万吨/年乙烯工程,DCS采用Emerson公司的DeltaV系统,控制站除常规I/O模块外,配置了FF-H1现场总线模块,每个模块的2个接口分别构成2段FF-H1总线,每段FF-H1总线设计9台仪表(实用6台,备用3台)。
该工程实用FF-H1现场总线段2473条,FF-H1现场总线仪表14375台,平均每个FF-H1现场总线段上挂5.8台仪表。FF-H1现场总线段上集成了不同厂家的现场总线仪表,除了Emerson的温度、压力、流量等仪表,还有E+H的雷达液位计和流量计,ABB的阀门定位器,ROTORK的电动马达控制器,TYCO的电动马达控制器等,保证了多种产品的一致性和互操作性。
④FCS的集成:小型工程项目中FCS自成系统,中、大型工程项目中FCS和DCS控制站集成,一般有两种集成方式。一种是FF-H1现场总线模块作为控制站的下属I/O模块,例如Emerson公司的DeltaV系统,如图3所示;另一种是FF-H1现场总线模块立,例如Honeywell公司的ExperionPKSR300系统,如图4所示。
前者FF-H1依附于控制器,信息传输慢;后者FF-H1立,信息传输快。图3和图4中工程师站(ES)、操作员站(OS)、计算机站(CS)为DCS操作监控层设备,控制站中有冗余电源(P)、控制器(C)、现场总线接口(H1)以及各类I/O模块。
图4FCS和DCS集成之二
点击此处查看全部新闻图片
⑤FCS的发展:FF-H1现场总线通信速率为31.25Kbps,不支持冗余总线,有人对这2点提出异议。值得高兴的是目前有多种现场总线,既有中速也有高速现场总线,而且工业以太网(Ethernet)也已进入实用阶段,正在从高层向底层延伸,有望实现“E(Ethernet)网到底”。FCS代表技术发展方向,在应用中不断改进,扬长避短,必将出现加的FCS。
3.控制技术的应用
根据“十一五”时期信息化发展规划,控制技术在流程工业的应用普及率达70%以上。
DCS和FCS为控制技术的应用提供了条件,控制软件作为DCS的可选件集成于系统之中。常用的控制技术主要有以下几种:
①单回路整定技术:单回路PID控制始终占据过程控制的主导地位,但鲁棒性能不理想,对大滞后和强干扰的过程表现出明显的不足。为此,研发出单回路模型预测控制,自动调整控制参数,适用于大滞后和强干扰的过程。例如,Honeywell公司的ExperionPKSR300系统中的ProfitLoop单输入单输出(SISO)模型预估控制算法。
②软仪表技术:这是基于过程机理模型或统计模型,对产品主要参数进行在线预估,并将预估参数参于在线控制产品质量。例如,Honeywell公司的针对常减压切换的ProfitGCC软件包。
③多变量模型预估控制技术:这是控制的技术,辨识过程模型,再预估过程参数和被控量,并与所要求的目标值比较,若有偏差,则计算出优控制量,从而实现全装置的多变量控制。例如,Honeywell公司的RMPCT软件包,AspenTechnology公司的DMC-plus软件包。
④在线优化技术:这是基于过程机理模型和动态优化技术,找出优操作点,再通过多变量控制器实现优化操作。例如,Honeywell公司开发了基于ProfitOptimizer、ProfitBridge和机理模型的动态优化软件,应用于乙烯和炼油装置。
⑤性能监视和维护技术:控制的效益投运初期较高,随着运行时间增加、装置性能变化、模型失配及操作变化等原因,致使控制性能降低,经济效益也随之下降。
为此,开发商推出了控制性能监视和维护工具软件,来维护控制的效益。例如,Honeywell公司开发出Scout软件,AspenTechnology公司开发出AspenWatch软件。
今后推动DCS、FCS、控制技术的应用和发展寄希望于流程工业,尤其是石油和化工行业是军。在“信息化带动工业化,工业化促进信息化”国策的指引下,必将迎来DCS、FCS、控制技术的应用和发展的春天。
主控制柜组成
远程控制柜(一)组成