• 6ES7231-0HC22-0XA8型号大全
  • 6ES7231-0HC22-0XA8型号大全
  • 6ES7231-0HC22-0XA8型号大全

产品描述

产品规格模块式包装说明全新

6ES7231-0HC22-0XA8型号大全

案例分析:“室内住宅电气系统设计”

(一)目的与要求:
1.分析室内照明的功能需求,书房、卧室、客厅、厨房、卫生间和凉台的照明要求是如何的?
2.系统组成部分之间的相互联系和作用:针对不同的照明需求来选择怎样的灯具?
3.如何计算家居总用电量?
4.室内照明的电线敷设的标准?
5.系统设计方案及其优化:

(二)设计要求:

1.用电负荷:

例如:照明用电负荷500w,用电负荷1500w,厨房用电负荷1500w,空调用电负荷3000w
大功率P=500w+1500w+1500w+3000w=6500w

2.照明和各种家用电器使用、方便,相互之间影响小,便于维修。

(三)设计分析;

1.设计的目的方便住户使用,满足住户的舒适和审美要求,便于维修,安装规范,确保室内电气线路的。
2.室内配电系统由电源配电箱和若干个回路组成,它们构成了室内电器线路系统的子系统。
3.当某一回路发生故障时,不影响其他回路的正常工作。

(四)设计方案:

1.电源配电箱

电源通过住宅的配电箱再进入室内房间,配电箱中应有短路、过载和漏电保护,具有过负载、过电压和漏电保护功能。每户应设置强弱电箱,配电箱内应设动作电流30mA的漏电保护器,分路经过控开后,分别控制照明,空调,插座等。控开的工作电流应与终端电器的大工作电流相匹配,一般情况下,照明10A,插座16A,柜式空调20A,进户40-60A。

2.电路的设计

如上例:家用电负荷大值约为6.5kw,通过电流为:K•(6.5kw/220v)=35.4~38.4A,
这里的K为保险系数,取值为1.2~1.3。电流过大各线路采用单的电路回路。室内配电系统采用多回路形式,本例设计有照明回路、插座回路、空调回路,对于厨房、浴室设立单回路。

3.导线与电器设备选择

(1)导线:为了防火、维修及,选用有长城标志的“”塑料或橡胶绝缘保护层的单股铜芯电线,线材槽载面积一般是:照明用线选用1.5平方毫米,插座用线选用2.5平方毫米,空调用线不得小于4平方毫米,接线选用绿黄双色线,接开关线(火线)用红、白、黑、紫等任一种。但在同一家装工程中用线的颜色用途应一致。

值得注意的事项:
家庭电路设计,2000年前,电路设计一般是:进户线4—6 mm2,照明1.5 mm2,插座2.5 mm2,空调4 mm2专线。2000年后,电路设计一般是:进户线6—10 mm2,照明2.5 mm2,插座4 mm2,空调6 mm2专线。(北京很多住宅是:进户线6—10 mm2,照明2.5 mm2,插座2.5 mm2,空调4 mm2专线)
本例里的电线通过的电流为35.4~38.4A,参照铜电线截面允许通过的电流范围,因此选用4mm2的铜线为基准较为合适。从而配线方案为:进户线6—10 mm2,照明2.5 mm2,插座4 mm2,空调6 mm2专线。

(2)电器设备:电源配电箱、电表、控制开关漏电保护开关、电源插座、开关面板、插座的选材面板的尺寸应与预埋的接线盒的尺寸一致;表面光洁、标志明显,有防伪标志和国家电工认 的长城标志;开关开启时手感灵活,插座稳固,铜片要有一定的厚度;面板的材料应有阻燃性和坚固性。

(五)线路布置

1.智能系统:在住宅电气线路设计中应预埋电话线、有线电视信号线、视频线、网络线,在客厅和三间睡房预埋电话线、有线电视信号线、视频线、选择其中一间睡房作为书房,预埋网络线。
2.照明回路:在睡房、客厅、饭厅、厨房、浴室、凉台室安装一个主光源吊灯,在睡房和客厅的墙壁上安装辅助光源壁灯。
3.功能电路:厨房放置冰箱、电饭堡、电热水器,排气扇电源插座,浴室安装淋浴器、洗衣机的电源插座,睡房和客厅安装空调的电源插座,书房安装电视机、音响、电脑等的电源插座都是立的电源回路。
4.线路布置图:在形成了住宅的电气线路设计方案后,绘制出线路走向位置尺寸图和线路布线图,编写《电气线路设计说明书》草拟布线图。
(1)划线。确定线路终端插座,开关,面板的位置,在墙面标画出准确的位置和尺寸。
(2)开槽。
(3)电源线配线
(4)埋设暗盒及敷设PVC电线管。
(5)穿线。
(6)安装开关,面板,各种插座,强弱电箱和灯具。
(7)检查。
(8)完成电路布线图,并向住户反馈设计方案,根据住户的意见进行修正。


1 变压器零序保护配置
厦门电网目前全部选用分级绝缘变压器,在多台变压器并列运行的变电站,主变中性点一般采用部分接地的运行方式。对于中性点不接地的变压器,其外部故障的后备保护,过去采用零序互跳保护或中性点间隙保护两种方法。
1.1 零序互跳保护
变压器中性点零序过电流动作时先跳开中性点不接地变压器的保护方式, 称为零序互跳。如图1, 2台主变并列运行, 1号主变中性点接地, 当K2点发生接地故障时, 1号主变中性点零序过流保护动作, 时限跳2号主变高低压侧开关, K2故障点被隔离, 1号主变恢复正常运行。如果故障点在K1处, 当时限跳开2号主变后,零序过流保护二时限跳本变压器, 切除故障。零序互跳保护显而易见的缺点是: ①有选择性切除故障的概率只有50%;②母线故障时没有选择性, 会扩大停电范围; ③零序过流保护时间整定和主变相间保护配合, 对保护整定配合不利; ④在2台变压器同时停运时才能进行互跳试验, 条件苛刻, 二次接线容易错误。



1.2 变压器中性点间隙保护
为了克服上述缺点,福建省中调闽电调继[1998]165号文要求将220 kV主变110 kV侧零序互跳保护改为间隙保护。间隙保护采用的方法是在变压器中性点加装放电间隙及间隙电流互感器,并与母线TV开口三角零序过电压保护共同组成。如图1,仍为2台主变并列运行,1号主变中性点接地。当K2点接地故障时,1号主变中性点零序过流保护时限跳100母分开关,Ⅰ段母线与故障点隔离,1号主变恢复正常运行。100母分开关跳闸后,K2故障点仍存在,由2号主变中性点间隙电流保护或零序过电压保护动作跳本变压器,实现故障隔离。同样,当K1点接地故障时,1号主变中性点零序过流保护时限跳开100母分开关,2号主变与故障点隔离,可以继续运行。但K1故障点仍存在,1号主变零序过流保护二时限继续跳开本变压器,故障。因此,采用间隙保护明显的优点是:①作为变压器本体的设备保护,和其他保护配合,整定简单;②动作过程具有选择性,只隔离故障部分,不会扩大停电范围。
该文件中仅要求将220 kV主变110 kV侧零序互跳保护改为间隙保护,但没有明确110 kV变压器接地方式及零序保护的配置,对于不同接线类型的110 kV变电站,变压器中性点接地方式应如何控制-零序保护应如何配置-特别是变压器中性点间隙保护,在110 kV系统中应如何正确运用-现以厦门电网110 kV系统为例,对上述问题进行初步的探讨。

2 厦门电网110 kV系统接线与保护配置特点
厦门地区110 kV系统接线特点是以放射状为主,以220 kV变电站为电源点,通过110 kV线路向各终端变电站辐射。110 kV终端变电站则采用内桥接线或线路-变压器组接线方式,低压侧无电源。
如图2所示内桥接线变电站,在正常运行方式下,100母分开关不作为103和104线路的联络元件。因此,内桥接线通常只有两种运行方式:1条线路带2台主变运行或2条线路各带1台变压器运行。在1线带2变运行方式下,2台主变只要有1台中性点接地即可,但由靠110 kV供电线路侧的变压器中性点接地运行,这一点很重要。内桥接线变电站目前的变压器零序保护配置为:中性点零序电流保护时限跳100和900母分;二时限跳本变压器;同时,变压器中性点装设棒间隙,但没有配置间隙TA以及开三角电压保护。




为了节省投资、占地,节约110 kV线路空中走廊等原因,新建设的110 kV变电站较多采用线路-变压器组接线,而且1条线路可“T”接2台甚至3台变压器,变压器零序保护仅有中性点零序过电流保护,没有配置中性点间隙电流保护以及110 kV TV开三角零序电压保护(主变110 kV侧只有单相线路TV)。由于零序保护配置不够完整,在多台“T”接的线路-变压器组接线中,各变压器中性点仍全部接地运行。但是,变压器中性点全部接地运行对系统具有一定的负面影响。
(1) 在部分线路或变压器检修、停运以及系统运行方式变化时,零序网络及零序阻抗值发生较大的变化,各支路零序电流大小及分布也会产生较大的变化。从保护整定配合出发,则要求保持变电站零序阻抗基本不变。
(2) 在变压器投入运行或线路重合闸过程中,有时会使在同路上运行的中性点接地变压器产生由励磁涌流引起的,幅值较大而且衰减较慢,并带有较大直流分量的零序电流。较容易造成送电不成功或重合闸不成功。
(3) 变压器中性点全部接地,使系统零序阻抗大幅度降低,由此造成不对称接地故障短路电流明显增大。在厦门地区,因为雷击、不对称接地故障干扰二次设备,造成保护装置误动以及损坏通信设备的事故仍时有发生。因此,有效接地系统中应尽量采用部分变压器中性点接地方式,以限制单相接地短路电流,降低对通信系统的干扰。

3 110 kV变压器中性点过电压水平计算
对于各种不同接线类型的网络,从接地故障复合序网可知,单相接地故障时,故障点稳态零序电压为




从(1),(2)式可以看出,不对称接地故障时产生的零序电压取决于系统零序阻抗Z0与正序阻抗Z1之比。当Z0/Z1增大时,接地故障时产生的零序电压亦相应增大。在电力系统中,有效接地系统的划分标准为:在各种条件下,应使零序阻抗与正序阻抗之比为正值且<3;当Z0/Z1≥3甚至Z0=∞时,则成为非有效接地系统。对于某一具体电网而言,在不对称接地故障时,如果零序电流无法形成通路,亦即在该网络中所有变压器同时失去接地中性点时,这个网络就成为局部不接地系统,Z0=∞。从(1)式可知,不接地系统发生单相接地故障时,故障点零序电压等于系统故障前相电压Uφ。
通过对不对称故障正序、零序网络进行简单的分析可知,在110 kV系统中,只要保证电源端变压器中性点有效接地,那么在各种条件下,零序阻抗与正序阻抗之比一定小于3。具体到厦门地区,只要保证220 kV变压器110 kV侧中性点有效接地,那么以该变压器配出的110 kV网络就一定是有效接地系统,Z0/Z1<3。若以Z0/Z1=3、系统相电压U=73.0 kV代入(1)式可以算出在单相接地故障时,故障点零序U0为43.8 kV。因此,在110 kV有效接地系统中,不接地变压器中性点大对地偏移电压<43.8 kV,小于分级绝缘变压器中性点的设计耐压值。
由此可以得出结论:对于目前厦门地区110 kV系统,在保证220 kV变压器110 kV侧中性点有效接地的情况下,各110 kV终端变压器中性点是否接地与系统及变压器本体的运行没。

4 110 kV变压器零序保护存在的问题
在有效接地系统中,变压器中性点对地偏移电压被限制在一定的水平,中性点间隙保护不会产生作用。配置间隙保护的目的,是为了防止非有效接地系统中零序电压升高对变压器绝缘造成的危害。只有当系统发生单相接地故障,有关的中性点直接接地变压器全部跳闸,而带电源的中性点不接地变压器仍保留在故障电网中时,放电间隙才放电,以降低对地电压,避免对变压器绝缘造成危害。间隙击穿会产生截波,对变压器匝间绝缘不利,因此,在单相接地故障引起零序电压升高时,我们希望由零序过电压保护完成切除变压器的任务。相反,间隙电流保护则存在一定程度的偶然性,可能因种种原因使间隙电流保护失去作用,从这个意义讲,对于保护变压器中性点绝缘而言,零序过电压保护比间隙电流保护重要,零序过电压保护通常和间隙电流保护一起共同构成变压器中性点绝缘保护。所以仅设置间隙电流保护而没有零序过电压保护是不够完善的,特别是当间歇性击穿时,放电电流无法持续,间隙电流保护将不起作用。
目前已经投运的110 kV变电站,大多数只装设中性点棒间隙而没有相应的保护,这种配置有弊无利,当电网零序电压升高到接近额定相电压时,所有中性点不接地的变压器均同时感受到零序过电压。如果没有采用间隙过流保护的终端变压器中性点间隙抢先放电,当无法持续放电时,则带电源的中性点不接地变压器将无法脱离故障电网。因此,对于低压侧无电源的终端变压器,如果没有配置完整的间隙电流保护及零序过电压保护,应解除中性点棒间隙或人为增大间隙距离,避免间隙抢先放电。
对于内桥接线的变电站,中性点接地变压器零序电流时限跳900和100母分不是的方案。由于在低压侧并列运行时,跳900开关后多损失一段母线,同时中性点不接地变压器低压侧开关仍运行,在目前没有零序过电压保护的情况下,若因10 kV转电等原因存在临时低压电源,则不接地变压器就存在过电压的危险。因此,在110 kV侧已装设三相电压互感器的前提下,增加零序过电压保护是简便易行的措施。
5 变压器中性点接地方式控制以及零序保护改进措施
是要确保110 kV系统为有效接地系统。防止误操作是根本的办法,保电源端变压器110 kV侧中性点有效接地。如果保护整定许可,可以将电源侧2台并列运行的变压器中性点同时接地。
带电源变压器失去接地中性点后可能成为非有效接地系统,因此,对于电源端变压器或者将来可能带电源的变压器,在设计阶段就应考虑配置完整的中性点间隙保护,包括中性点零序过电流保护,中性点间隙电流保护以及母线开三角零序电压保护。
在110 kV馈出线路上,不论并接几台变压器,在电源侧中性点接地的情况下,各终端变压器中性点可以不接地运行。在实际运行中,为防止可能出现的不因素,可安排其中一台中性点接地,在选择接地中性点时,可按以下顺序考虑:选择低压侧临时带电源的变压器,其次考虑高压侧没有断路器的变压器,后选择离电源端距离短的变压器中性点接地即可。
已经投入运行的大部分110 kV终端变电站,由于目前尚未配置母线TV开三角零序电压保护以及中性点间隙电流保护,为避免中性点间隙抢先放电,应将原先装设的中性点棒间隙拆除或人为增大间隙距离。
今后设计的110 kV变电站,高压侧宜考虑采用三相电压互感器,设置零序过电压保护和变压器中性点间隙电流保护。这种配置可以提供灵活的运行方式,适应将来电网结构的变化。
对于内桥接线变电站,主变中性点零序电流保护时限应切除另一台不接地变压器,避免扩大停电范围或者可能出现的工频过电压。


20220222173907301904.jpg202202221739073176584.jpg202202221739072455394.jpg


1 引言 

(1) 三菱f系列变频器外部端子调速可分为模拟量调速和多段速调速 

模拟量调速可用电压0~10vdc或电流4~20madc,进行无级调速。本公司货架组件(横梁)冷弯设备机组便采用多段速闭环变频器调速控制系统;一般采用外部输入端子sd、stf、str、rl、rm、rh,进行三段速调速。rl、rm、rh是低﹑中﹑高三段速速度选择端子,sd是输入公共端,stf是启动正转信号,str是启动反转信号。当y10,y11有输出时,变频器为低速运行;当y10,y12有输出时,为中速运行;当y10,y13有输出时为高速运行。三段速分别设置为20hz、30hz、45hz。在模拟量调速时,通过编程,三菱fx2n系列可编程控制器根据操作台发出的信号,选择控制方式:模拟量调速或多段速调速。其控制系统还可以通过dos操作系统开发编程的微机作为上位机实现控制功能或结合触摸屏技术实现随机动态适时控制或结合触摸屏控制技术来操作控制实现有关功能。 

(2) 三菱fx2n系列可编程控制器是小型化,高速度,的产品,是fx系列中档次的小型程序装置。 

本文探讨melsec fx2n-32mr在货架组件(横梁)冷弯机组中的应用特点。 

2 系统构成 

2.1 工艺流程 

工艺流程如图1所示:

据货架组件(横梁)的冷弯成型孔型设计及冷弯成型工艺要求,货架组件(横梁)冷弯机组共有12站牌楼构成,钢卷料由站牌楼前的带料导引装置将钢带穿入冷弯机组进行冷弯成型加工,该冷弯机组主动力由22kw的三菱多功能矢量控制变频器和异步变频电机驱动系统构成,各牌楼间的动力传递可采用链传动或齿轮组来实现;主控系统选用melsec 

fx2n-32mr可编程控制器,闭环控制反馈信号由1200p/r的旋转编码器被动测量提供信号开关量并测长,根据所选的编码器的线数以及要走的位置量,确定好对应的计测脉冲数,然后设置plc,使其在计测到相应的脉冲数时产生相应的动作以实现产品定长切断的控制,其基本长度控制精度可达±0.5mm以上,可重复长度控制误差分布范围大不过1mm。 

2.2 系统硬件结构的主要配置 

(1) plc选用是fx2n-32mr,外加fx2n-232-bd通信模块。各1只; 

(2) 触摸屏选用型号为:gp37w2-bg41-24v,或采用微机控制上位机系统; 

(3) koyo旋转编码器trd-nh1200-rz及测量辊、24v开关电源,各1台; 

(4) 三菱多功能矢量控制变频器:fr-a540-22k-ch变频器,1台; 

(5) 三相笼型交流异步电动机:y系列,4,22kw,1台; 

(6) 其它电气选配件。 

3 电气闭环控制系统原理 

3.1 无闭环系统的控制原理 

要实架组件(横梁)的冷弯成型机组的闭环无级控制,根据变频器和变频电机的特性,即:在一定载荷下变频器所存在的理想加速和减速特性曲线,或根据不同的和规格的变频器的特性参考资料、冷弯机组加工件的负荷特性、电机的负荷特性等进行适时调整。基本控制原理如图2所示:

3.2 基本控制思想 

(1)据旋转编码器测量反馈的当前速度信号适时调整变频器的输出驱动频率值,从而保证变频电机能以要求的速度平稳运行;其还表现在根据具体冷弯产品的成型工艺要求、负荷波动规律等选择相应的速度控制模式,即初时运动加速度与加速控制时间、平稳运行速度与距离、减速运动加速度与控制时间等进行变频器的适时调整,确保主机运行及控制反馈运行过程的平稳,不稳定形成的系统差故障; 

(2)据旋转编码器的脉冲测量数反馈当前冷弯机组主电机的位移信号及预先设定的控制方案适时调整变频器的输出驱动频率值,使变频电机先以较高的速度运行到接近冷弯产品控制切断长度的位置后将速度平稳降到较低的速度下工作,并在切断控制处准确制动停准,必要时可采取机械抱闸系统来辅助快速定位,再通过输出控制点发出切断控制信号实现液压停剪;plc控制系统在工作过程中实时采集运行数据,并不断地与存放在软件控制数据块里的标准位置参数进行比较和控制决策,从而达到快速准确定位、提高作业效率的目的,并与监控系统交换工作信息以实现生产管理系统的动态管理。 

4 负载机械特性和变频器的选型 

该系统的电气拖动主要是驱动冷弯轧辊运动,其阻力矩tl取决于冷弯轧辊与钢卷料之间的摩擦力fl与冷弯轧辊半径r的乘积,即tl=fl×r。在这里,冷弯轧辊的半径r是恒定不变的,摩擦力fl的大小与相应的冷弯产品的孔型设计工艺水平、机组的传动效率和相关材料与轧辊间的摩擦系数等有关,与转速高低关系不大。这是典型的恒转矩负载机械特性。可初步选用三菱fr-a540系列变频器。 

4.1 三菱fr-a540系列变频器具有的特性 

(1)采用的磁通矢量控制。由于采用了精简指令集计算机risc微处理芯片,使之具有全新的在线自动调整功能,使电机在不影响启动速度的情况下得到调整。 

(2)具有多段速度选择功能:它有高速rh、中速rm、低速rl、二加/减速时间选择rt、漏型公共输入端sd等端子,可以通过plc的输出点直接控制输入端子的on/off状态来实现变频器速度的上升、下降和停车。每档速度的大小可由变频器功能预置来设定。 

(3)运用了三菱“柔性脉宽调制”(soft-pwm)开关方式,实现低噪音运行,并能减少对外射频干扰,有利于邻近的plc、旋转编码器的运行。 

(4)调速范围:1:120(0.5hz~60hz运行时),且低频运行性能稳定,采用自动调整后,可以在不同的的电机上实现运行。 

4.2 变频器的选型 

货架组件(横梁)冷弯机组的主要功耗包括:用于货架组件(横梁)弯曲变形功率、克服辊子与工件之间的摩擦阻力及辊子轴承摩擦阻力、克服机组传动阻力及功率损耗,一般采用经验测算方法与简单公式计算后放大倍数的方法共同核算,通常还根据冷弯成型的成功案例进行类比测算,并依此确定具体型号变频器的实际功率。 

综合多种因素,笔者选定了三菱fr-a540-22kw-ch变频器。经试验证明:针对货架组件(横梁)的冷弯成型机组采用pgl板反而会出现较大的定位误差,故取消了pgl板设计,仅利用变频器的多段速选择和fr-a540的来实架组件(横梁)的冷弯成型的定位控制。 

5 外部接口设计 

三菱fx2n型plc内置多个高速计数器。经过测量测试,选择采用两相两计数输入、应答频率为30khz的c251计数器,将旋转编码器的a、b输出端与plc的x0、x1输入点相连,可以稳定地捕捉货架组件(横梁)冷弯机组上加工产品所需要的闭环控制反馈信号,实现冷弯产品的加工长度、位置定位后的程序比较及控制信号的输出,实现冷弯产品的定长液压停剪动作。机组大运行速度限制计算为:测量辊周长与应答频率为30khz的乘积再除旋转编码器的每转脉冲数,如我司选用的测量辊直径为φ60mm,周长为188.5mm,则每秒大运动位移为: 

188.5mm×30000÷1200=4.1725m 

远远满足货架组件(横梁)冷弯机组的大运行速度在20m/min的要求。 

fx2n-32mr的输出点的外部接线方式为分组式,有com0~com3共4个com点与16个输出点对应,可以灵活地选择输出点的电源形式。 

用plc编写一条32位的高速计数器区间比较复位指令dhsz,用触摸屏对plc数据寄存器d赋值,数值以理论脉冲数为基准增减,再与c251记录的编码器脉冲数进行比较,当两个数据相等时,plc指令变频器和电机停机。经反复赋值试验,可以找到的编码器脉冲总数。然后按照速度控制规律 

的各段分配脉冲数,以指导plc适时向变频器发出速度切换指令。试验时电机采用低速运行,脉冲数或实际长度换算数以实际记录为准。 

加速/减速时间的设置是变频器参数设置的关键。冷弯机组遵循加速-运行-减速-低速运行正反转调整-停止为一个运行周期,每一周期中的间隔是冷弯产品的切断过程及系统动作复位。合理设置这些参数,可以调整定位运行的切断控制精度及机组生产效率,使它适合负荷的要求。 

6 结束语 

plc+变频器控制实现的多段速系统控制确保了货架冷弯机组的自动化控制要求,具有运行稳定,定位精度高等特点。实践也证明fr-a540-22kw变频器满足货架冷弯机组的调速和基本定位控制要求,提高了生产效率。此种plc+变频器控制方式也可用于其他需要速度配合及定位控制的电机变频调速系统。 

根据今后货架冷弯机组的自动化发展方向,将成型速度的设定与控制理论的发展与应用、成型辊辊型设定与实时调节、具体机械设备的故障诊断的处理与显示等与具体的plc控制功能和发展相结合,必然能促进货架冷弯机组的自动化发展水平。



http://zhangqueena.b2b168.com

产品推荐