• 西门子6ES7214-1AD23-0XB8型号大全
  • 西门子6ES7214-1AD23-0XB8型号大全
  • 西门子6ES7214-1AD23-0XB8型号大全

产品描述

产品规格模块式包装说明全新

西门子6ES7214-1AD23-0XB8型号大全



可编程控制器(Programmable Logic Controller),简称PLC,它的应用面广、功能强大、使用方便,已经成为当代工业自动化的主要支柱之一,在工业生产领域得到了广泛的使用,西门子公司的PLC产品有SIMATIC S7、M7和C7等几大系列,S7系列是传统意义的PLC产品,其中S7-400是用于中性能要求的大型PLC,可以扩展300多个模块。S7-300/400可以组成MPI(多点接口),PROFIBUS网络和工业以太网。 

1 S7-400的基本结构与特点 

1.1 基本结构 

S7-400采用大模块结构,由机架、电源模块(PS)、处理单元(CPU)、数字量输入/输出(DI/DO)模块、模拟量输入/输出(AI/AO)模块、通信处理器(CP)、功能模块(FM)和接口模块(IM)组成。DI/DO模块和AI/AO模块统称为信号模块(SM)。机架用来固定模块、提供模块工作电压,并通过信号总线将不同模块连接在一起。S7-400提供了多种级别的CPU模块和种类齐全的通用功能模块。$7-400采用模块化无风扇设计,性能范围宽广的不同模块可以灵活组合,扩展方便。 

1.2 特点 

S7-400的特点有: 

a.运行速度高,存储器容量大; 

b.I/O扩展功能强,可以扩展21个机架; 

c.强的通信能力,容易实现分布式结构和冗余控制系统,集成的MPI能建立多32个站的简单网络,大多数CPU集成由PROFIBUS—DP主站接口,可以用来建立高速的分布式系统; 

d.能通过钥匙开关盒口令实现保护; 

e.诊断功能强,新的故障和中断时间保存 

在FIFO(先入先出)缓冲区。 

2 S7-400的配置和工作原理 

2.1 S7-400的配置 

S7-400按冗余方式设计,主要器件都是双重的,可以在发生故障时继续使用备用的元器件。S7-400由两个子系统组成,每个系统有一块有容错功能的CPU414-4H,一块PS407电源模块。子模块用于连接两个处理器,放置在处理器内部,并由光缆互连。每个处理器上有S7I/O模块,控制器也可以有扩展机架或ET200M分布式I/O。 

功能总是冗余配置的,I/O模块可以是常规配置、切换型配置或冗余配置,具体说明如下: 

a.常规单通道单路配置。两个子系统只有一个有一套I/O模块(单通道),它可以在一个控制器中,或者是分布式的I/O站。I/O模块只能被该子系统访问,读出的I/O信息同时提供给两个控制器。如果出现故障,属于故障控制器的I/O模块退出运行。 

b.单通道切换式配置。单通道切换式配置的I/O模块虽然是单通道设计,但是两个控制器都可以通过冗余的PROFIBUS-DP网络访问I/O模块。切换式I/O模块只能在ET-200M远程I/O站中。 

c.双通道I/O模块容错冗余配置。系统中有两套相同的容错冗余配置的I/O模块,每一个子系统都可以访问这两套I/O模块。 

2.2 S7-400H冗余控制PLC的工作原理 

S7-400H采用“热备用”模式的自动冗余原理,在发生故障时无扰动的自动切换。无故障时子单元处于运行状态,如果发生故障,正常工作的子单元能立完成整个过程的控制。为了保证无扰动切换,实现控制器链路中间的快速、的数据交换。两个控制器使用相同的用户程序,自动的接受相同的数据块,过程映像和相同的内部数据,例如定时器、计数器及存储器等。 

这样可以确保两个控制器同步的新内容,在任意一个系统有故障时,另一个可以承担全部控制任务。 

S7-400H采用“事件驱动同步“,在两个子单元的内部状态不同时,例如在直接I/O访问、中断、报警和修改实时时钟,就会进行同步操作。通过通信功能修改数据,由操作系统自动执行同步功能,不需要用户编程。 

S7-400H对控制器之间的链接、CPU模块、处理器、ASIC和存储器进行自检。在启动后每个子单元完成执行所有的测试功能。每个周期只执行部分自检功能,以减轻CPU的负担。 

3 S7-400H冗余故障分析及相应处理 

3.1 丙烯循环气压缩机控制系统 

聚丙烯装置丙烯循环气压缩机(PK301)的控制系统是一套典型的S7-400H PLC,其结构如图1所示。

 
图1 冗余控制系统

由于该PLC系统的一个稳压电源(220V AC.24V DC)故障,在PK301停车检修时对故障电源进行换。可在稳压电源换好之后,PLC系统再上电,发现后启动的CPUl状态为STOP,且两CPU上的REDF(冗余故障)和EXTF(外部故障)红灯亮,控制器上其它状态指示灯和故障指示灯正常。判断系统出项冗余故障造成外部故障。 

将两个控制器的模式选择开关都扳到STOP位置,然后将先前没有起来的CPUl模式选择开关扳到RUN位置,等RUN绿灯亮,STOP黄灯灭后,再将CPU0模式选择开关扳到RUN位置,RUN绿灯闪烁后灭,STOP黄灯一直亮,故障无法排除。系统下电前有一输入变量被强制,现在FRCE(强制)黄灯亮,将该输入点的强制取消(两CPU),FRCE黄灯灭后,再次将状态为STOP的CPU0模式选择开关从RUN_STOP—RUN位置依次扳动,CPU0 RUN绿灯亮,STOP黄灯灭。这时两CPU都为RUN绿灯亮,REDF(冗余故障)和EXTF(外部故障)灯都灭,故障排除。 

故障排除后,又强制了一输出点,然后将热备CPU1模式选择开关从RUN—STOP—RUN位置依次扳动,RUN绿灯闪烁后灭,STOP黄灯一直亮,两CPU上的REDF(冗余故障)和EXTF(外部故障)红灯亮。将强制解除后重复以上动作,CPU1恢复运行状态,热备冗余正常。由此可知,如果S7-400H系统有输入/输出点被强制时,两个子控制系统控制器任意一个或同时状态为STOP,或是系统掉电,均会出现冗余故障,先启动的控制系统会运行正常,而后面的一个则无法启动到运行模式,此时系统不冗余,只有将强制解除后方可排除该故障,系统恢复冗余。 

3.2 挤压机控制系统 

高压聚乙烯装置的挤压机控制系统同样是一套典型的$7-400H PLC。某El巡检时发现系统出现冗余故障,两CPU上的REDF和EXTF红灯亮,IF(模块2故障)红灯亮,热备CPUl状态为STOP黄灯亮,CPUl中(子模块)bbbb OK灯灭,控制器上其它状态指示灯和故障指示灯正常。判断为模块2故障造成冗余故障,引起外部故障灯亮。 

如图1所示,S7-400H的每个处理器都有两个子模块,用于连接处理器。将CPUl的和CPU0的对调,结果CPU0的bbbb OK灯灭;再将CPU0的和CPU0的FMl对调,4个bbbb OK指示灯的状态没有变化,判断出现在CPU0的FMl和是好的;之后将CPUl的FMl和对调,结果CPU0的FMlbbbb OK灯灭,至此判断出:现在CPU0的FMl卡是坏的。将其换后,控制器中故障指示灯灭,4个bbbb OK指示灯均为亮,系统恢复正常。 

从以上操作过程及相应结果可知,如果模块故障,同一组中,bbbb OK灯亮的一个是坏的,相反bbbb OK灯灭的一个是好的。 

3.3 S7-400H PLC与HMI的PC机通信 

某聚丙烯装置挤压机的控制系统是一套S7-400H PLC,并有HMI(人机界面)座位操作站,其结构如图2所示。

 
图2 PLC系统结构示意图

运行过程中有一个操作站出现故障,经检查发现主机主板损坏。找来新PC机,将原两块西门子网卡装好后,再将原硬盘数据备份到新机中,启动Inbbtion ifix3.5,下位PLC数据没有传到PC机,PLC和PC机通信不通。打开Station Configure界面,看到CPl613和CPl613(1)两网卡,双击CPl613后打开西门子网卡编辑画面,双击properties,看到 address,修改此处地址为原地址。如果地址不能改,则可按照 

以下步骤进行操作: 

a.将OPC server状态改为停用; 
b.删除两块CPl613网卡; 
c.安装SIMATIC NET配置文件; 
d.逐个增加两块CPl613网卡,并将网卡的地址改为原地址(80-00-06-01-00-10,80—00-06-014)0-11); 
e.运行OPC servero 

4 结束语 

通过对PLC系统维护工作中碰到的一些故障进行分析,提出了解决方案,并已经成功应用到石化行业的生产当中,为正在使用S7-400PLC企业的**提供宝贵的经验。(end)
数控设备是技术密集型和知识密集型的机、电一体化产品,其技术、结构复杂、价格昂贵,随着生产企业规模的不断扩大及设备自动化程度的不断提高,数控车间里所用的数控设备种类和数量也在不断增加。要想好地利用数控机床,就对数控机床的结构功能及系统有充分的了解。数控机床的动作控制通常由两种方式来实现:一种是通过CNC系统(计算机)的数字信息来控制,即“数字控制”,如数控机床工作台的前、后、左、右移动,主轴箱的上、下移动和围绕某一直线轴的旋动位移量等。这些控制是用插补计算出的理论位置与实际反馈位置比较后得到的差值对伺服进给电机进行控制而实现的。这种控制的是保证实现被加工零件的轮廓,即除点位加工外,各个轴的运动时刻都保持严格的比例关系;另一种是在数控机床运行过程中,以CNC系统内部和机床上各行程开关、传感器、按钮、继电器等开关量信号的状态为条件,并按照预先规定的逻辑顺序,对诸如主轴的开停、换向,的换,工件的夹紧、松开。液压、冷却、润滑系统的运行控制。这一类动作的控制主要是进行开关量信号的顺序控制,一般由PLC来完成。 

1 PLC程序在数控机床上的应用 

PLC为可编程控制器.在数控机床上所使用的PLC也称作PMC。它有以下优点:响应快。控制精度高,性好,控制程序可随应用场合的不同而改变,与计算机的接口及维修方便。通常,数控机床上所使用的PLC程序包括系统程序和用户程序。其中系统程序包括监控程序、编译程序及诊断程序等,由PLC生产厂家提供,并固化在EPROM中,用户不能直接存取,也不需要用户干预。丽用户程序是用户根据现场控制的需要,用PLC程序语言编制的应用程序,用以实现各种控制要求。常用的PLC程序设计语言主要有梯形囝、语句表、功能块图等。 

由于数控机床很多执行机构的动作都是通过PLC的控制指令来实现的,可以利用PLC对数控机床进行故障的检测和维修,或者是通过修改、编写PLC程序为数控机床增添某个可执行动作或功能。 

2 数控机床的控制设计 

在使用数控机床的过程中作者发现:有些系统的机床在操作不当或因机床本身原因出现故障报警停机之后,需要报警并重新返回HOME点才能再次执行程序,可是有些系统的机床在报警后并不需要返回HOME点就可以直接再次运行程序。后者虽然节省了一点时间,可是却存在大的隐患。某企业有一台数控加工就出现过这样的情况:某次执行空运行时,产生了机床报警导致停机,操作工报警后未回HMOE点就再次运行空运转程序,使主轴与夹具发生碰撞,造成主轴精度及动平衡差,无法满足设备加工的工艺要求。分析其原因:当机床在运行过程中报警停机之后,机床夹具及主轴的位置状态已经发生了变化(不再是初始状态),若是报警之后立即重新开始执行后续程序,就很容易导致机床主轴误动作造成主轴与夹具或工件发生碰撞。为了避免因碰撞造成的不必要的工废.进一步提高设备本身的防错能力,作者针对FUNUC系统加工设计了一个数控机床动作的控制程序,该程序的作用主要是保证在执行加工程序或者空运行程序过程中发生了机床停机报警,在操作人员报警后,执行回参考点的程序,如果不执行回参考点程序使程序、设备的夹具、主轴、等恢复到初始位置,机床将无法执行加工程序或空运转程序,这样就有效避免了设备碰撞的可能性。 

2.1 设计思路 

为机床增加防错功能以实现机床动作的控制是通过修改数控机床的PMC程序及机床自动运行的条件,增加机床启动条件的限制,并在操作面板上增加循环启动准备好指示灯(STEN—L)、返修指示灯(RECUTL)及返修键按钮。具体方案是: 

(1)设置的机床启动条件:①x,y、z轴回到二参考点,且A轴在90。状态(STA—ENI);②主轴上的为初始(T6)或者为空(T14)(STA—EN2);③A轴处于夹紧状态(STA—EN3);④夹具处于松开状态(STA—EN4)。机床同时满足这4个条件才能够执行加工程序进行自动加工(STA—EN)。设计此限制条件的目的是使机床在发生报警后,先运行RETURN程序,待机床恢复至可以正常运行的状态后,才在AUTO或者MEM模式下运行机床,防止程序从中间状态启动,引起机床碰撞。 

(2)如果未满足启动条件,循环启动准备好指示灯不亮时,按下[CYCLE START]按键,机床则产生“61.0 CYCLE START NOT REDAY,PLEASERETURN!”报警,提醒操作人员机床被禁止自动加工的原因及应该采取的措施。 

(3)当有工件需要返修时,可能只需要执行某个特定的程序段,此时可以接下返修键,返修指示灯亮后,即可进行返修工件的加工。在返修加工或单段加工模式下,设备不受“循环启动准备好”条件的限制,可以循环启动。 
202202221739072455394.jpg20220222173907301904.jpg202202221739073128824.jpg


1.前言

随着控制技术的不断发展,燃煤电站的控制系统大都已经实现了自动化控制。新建设机组全部采用的控制技术,老机组的控制系统也相继进行了改造,大部分机组已经改造完毕。燃煤电站的控制系统基本都采用了目前较流行的分散控制系统即DCS系统,保证发电生产系统的稳定运行。目前由于人类环保意识的增强及人类生存发展的需要,国内外都在积注重环境保护技术的发展及环保工程的实施,新建大型燃煤机组都设计有脱硫及脱硝系统。以前的老机组都没有脱硫(SO2、SO3)及脱硝(NO、NO2等)装置,以及未来的CO2的减排控制等,根据国家对环保的要求对现有的发电机组进行污染物的排放控制,达到国家环保要求。火电厂锅炉在增加脱硫及脱硝装置进行改造时,其控制系统要根据具体电厂及具体机组的特殊情况进行设计。现在随着控制技术的不断发展,在控制领域出现了几大主要控制系统。那末在改造设计当中采用什么样的控制系统是目前我们设计人员要认真面对的。即要保证系统的稳定,又要考虑客观实际又要节约资金。本文简单介绍了硫及脱硝改造机组现状,介绍一下几个控制系统各自的特点,根据不同的机组及现场实际情况,为控制系统设计提供一些参

2.火电厂改造机组现状

由于目前改造机组增加脱硫、脱硝系统的工艺大都趋于简单化,尤其是200MW及以下机组,主要考虑成本及系统占地面积等因素。目前在改造机组中脱硫系统的技术一般采用简易湿法脱硫技术、干法和半干法脱硫技术。脱硝技术有采用SCR、SNCR和燃烧调整方式等,其中在改造机组中主要采用降低氮氧化物的生成技术,采用低氮燃烧器及调整二次风等方法降低氮氧化物。从目前国内应用的脱硫及脱硝技术上看,其工艺系统相对比较简单,控制回路也比较少。根据目前对改造机组的设计情况来看,对控制系统的要求大致分为以下两种情况。一种情况是将脱硫、脱硝的控制系统并入到电厂相应机组的主控制系统当中,与原主系统实现集中控制。另一种情况是将脱硫、脱硝的控制系统立设计,使脱硫、脱硝的操作控制在主系统之外。在系统停运及检修时,不影响主系统的正常运行。根据以上不同种情况,控制系统可以有不同的设计原则及不同的控制实现方式。种情况设计可以选用与主系统一致的DCS系统设备,使之与其实现方便的通讯连接。如考虑价格及其它因素亦可设计采用PLC及FCS总线技术,通过其它通讯方式与主系统实现连接。在该方案设计时考虑主系统的兼容性,调研原系统的设计容余及备用空间情况。重要的是原主系统与新设计系统的通讯协议是否兼容等。二种情况控制系统的设计比种情况要灵活得多,可选的控制系统与原主控制系统没有联系,是一个立的控制系统。该立的控制系统可以根据用户的要求设计为DCS、PLC、FCS任意一种形式,也可以设计成三个系统技术的综合控制系统。选型主要根据以下几种情况而定:该系统的运行方式;控制系统的资金投入;现场与控制室的距离;系统中模拟控制回路的数量;系统中开关量的数量;现场一次仪表智能化的程度等。三个控制系统各具有优缺点,如条件许可也可以设计成综合的控制系统。它们都在许多电厂中得到了广泛的应用。

3.PLC控制系统

可编程控制器即简称PLC(PROGRAMMABLE LOGIC CONTROLLER),虽然现在仍然称PLC,但已经与原来的实际意义不相符合,并不是初简单的可编程控制器。PLC的初定义是一种数字控制电子计算机,它使用了可编程序存储器储存指令,执行诸如逻辑、顺序、计时、计数与演算等功能,并通过模拟和数字输入、输出等组件,控制各种机械或工作程序。经过30多年的发展,PLC已十分成熟与完善,并开发了模拟量闭环控制功能。长期以来,PLC始终在各行各业自动化控制领域得到广泛的使用,为各种各样的自动化设备提供了非常的控制应用。主要原因在于它能够为自动化控制应用提供和比较完善的解决方案,适合当前工业企业对自动化的需要。目前的PLC已经不仅具有早期的逻辑运算功能,而且已经向综合控制方向发展。新型PLC也在不断完善PID闭环控制功能,其他各种功能也在不断得到改进。PLC已被广泛应用于连续过程的控制领域,而且基于连续过程控制技术的发展趋势正在进一步得到增长。通讯是PLC广泛应用的关键技术,这种技术在PLC领域已经得到扩展。同系统一样,对PLC进行分散化处理已经成为可能,容易进行管理,以便能够好地集成在一起。

PLC系统的价格也在逐渐降低。由于PLC系统小模件单元的价格只在千元左右,甚至低所以大部分用户已经不再对已损坏的模件修理而是直接换新的模件,因为修理这样的故障模件也许会花费同样甚至多的费用。现在一些小型甚至小型PLC系统已经向工业用户提供了模拟量I/O、PID控制回路、通讯接口,甚至与企业网络系统相连接的现场总线。具有14个通道的I/O和4个PID控制回路的PLC系统,其价格也只有千元左右,这种产品非常适合小系统控制应用的需要。一些PLC供应商依托强大的应用市场发展小型PLC产品,甚至大量的工业用户已经将其看作是低端应用市场上的日用品。

在PLC硬件不断发展的同时,PLC的编程软件也在向前发展。因为作为整个系统不但要充分考虑硬件产品的性能,还采取相应的措施为工业用户解决工程师可用的组态软件工具、故障诊断技术、网络通讯能力以及除基本自动化硬件以外的附加软件包的适用性能。目前不但PLC厂家在不断努力开发适合于PLC系统的编程软件,其他软件开发商也在不断推出与之相配套的组态软件,而且每种软件都适合于多种的PLC产品,为用户编程提供了大的方便。

PLC的基本特点是构成系统比较灵活。在一些小型的系统中即控制和监视点数较少时,可以采用小型PLC控制系统来实现工艺过程的监视及控制。小型系统采用一台PC机为主站,多台同型号PLC为从站,实现系统的监视及控制。现在随着PLC网络技术的发展,多台PLC组成的大型控制系统也不断被采用,功能已经越来越接近于DCS系统。系统可由多台PLC组成,通过网络将多台PLC相连接,PLC可作为底层数据采集和实现就地控制。比较大的控制系统可以用一台PLC为主站,多台同型号PLC为从站,构成PLC网络,实现比较复杂系统的综合监视及控制功能。PLC也可以作为DCS的一个子系统存在于DCS系统之中。

4.DCS控制系统

分散控制系统DCS(DISTRIBUTED CONTROL SYSTEM)含义是控制危险分散集中显示。分散控制系统DCS是集4C(COMMUNICATION,COMPUTER,CONTROL,CRT)技术于一身的监控技术。他的特点是从上到下的树状拓扑大系统,其中通讯是其关键技术。DCS由四部份组成:I/O板、控制器、操作站、通讯网络。I/O板和控制器上各DCS厂家的技术水平都相差不远,如果说有些差别的话是控制器内的算法有多有少,算法的组合有些不一样,I/O板的差别在于有的有智能,有些没有,但是控制器读取所有I/O数据在一秒钟内完成一个循环;操作站差别比较大,主要差别是选用PC机还是选用小型机、采用UNIX还是采用NT操作系统、采用的还是通用的监视软件,操作系统和监视软件配合比较好时可以减少死机现象;差别大的是通讯网络,差的是轮询方式,的是例外方式,其速度要相差很多。控制器I/O部件和生产过程相联接,操作站和人相联系,通讯网络把这两部分联成系统。所以操作站是DCS的重要组成部分,工程师站给控制站和操作站组态,历史站记录生产过程的历史数据。
DCS系统的数据主要来自现场的信号和各种变量,在控制站中表现为与工位号对应的相关测量值(PV)、设定值(SV)、操作输出值(MV)及回路状态等。这些数据被采集到DCS控制站相应的存储器里,构成实时数据。其他属于与工位号有关的组态信息,如量程、工程单位、回路连接信息、顺序控制信息等,也在控制站中存储,但同时在操作站或工程师站中存储,而且有映像关系。中小型DCS控制站,以控制16-32回路为限、分散性较易为人们所接受。目前小型DCS所占有的市场,已逐步与PLC、FCS共享,今后小型DCS可能与这2种系统融合,而且“软DCS”技术将在小型DCS中得到发展。控制站是整个DCS的基础,它的性和性为重要,死机和控制失灵的现象是不允许的,而且冗余、掉电保护、抗干扰、构成防爆系统等方面都应很有效而,才能满足用户要求。多年的实践经验证明,绝大多数厂家的DCS控制站是能够胜任用户要求的。

DCS系统价格相对PLC系统较高,当然应从性能价格比、产品生命周期及用户根据实际生产装置的自控要求对DCS进行选型、工程费用、维修费用等方面综合考虑。重要的是目前PLC系统、工控机系统(IPC)的价格都是以廉价著称,所以DCS厂商在这方面面临的形势很严峻,今后5年虽然DCS可以生存,但应在降、减少维修费用、发展远程诊断和维护及完善服务体系等方面多下功夫,应对以为主的方式进行修正,即让多的**能参加到DCS应用的行列中来。

DCS的发展初衷主要是解决系统中的控制回路的控制算法。70年代中期,过程工业发展很快,但由于设备大型化、工艺流程连续性要求高、要控制的工艺参数增多,而且条件苛刻,要求显示操作集中等,使已经普及的电动单元组合仪表不能满足要求,在此情况下,业内厂商经过市场调查,确定开发的DCS产品应以模拟量反馈控制为主,辅以开关量的顺序控制和模拟量开关量混合型的批量控制。所以今天DCS的优势仍然是实现模拟量控制,模拟量控制及其算法是DCS的技术。

从目前的DCS来看,一个控制器完成几十个回路的运算和几百点的采集、再加适量的逻辑运算,经现场使用,效果是比较好的。这就产生控制器升级的问题了。有时控制器和检测元件的距离还是比较远,这就促进现场总线的发展。

5.FCS控制系统

现场总线控制技术(FIELDBUS CONTROL SYSTEM)是近几年发展起来的一种新兴控制系统。FCS系统的是总线协议,即总线标准。一种类型的总线,只要其总线协议一经确定,相关的关键技术与有关的设备也就被确定。就其总线协议的基本原理而言,各类总线都是一样的,都以解决双向串行数字化通讯传输为基本依据。但由于各种原因,各类总线的总线协议存在很大的差异。为了使现场总线满足可互操作性要求,使其成为真正的开放系统,在IEC标准,现场总线通讯协议模型的用户层中,就明确规定用户层具有装置描述功能。数字化通信取代4-20mA模拟信号:传统技术,现场层设备与控制器之间的连接是一对一(一个I/O点对设备的一个测控点)所谓 I/O接线方式,信号传递4-20mA(传送模拟量信息)或24VDC(传送开关量信息)信号。应用现场总线技术可用一条通信电缆将控制器与现场设备(智能化、带有通信接口)连接,使用数字化通信完成底层设备通信及控制要求。

现场总线主要技术特点之一是要求现场设备智能化;即应用现场总线技术,要求现场设备(传感器、驱动器、执行机构等设备)是带有串行通信接口的智能化(可编程或可参数化)设备。因此,现场总线技术以计算机大规模集成电路的发展为基础。特点之二是集现场设备的远程控制、参数化及故障诊断为一体;现场总线采用计算机数字化通信技术连接智能化现场设备,因此,控制器可从现场设备大量丰富信息,可实现设备状态、故障、参数信息传送,可完成设备远程控制、参数化及故障诊断工作。

基于现场总线的自动化监控系统主要优点:(1)基于现场总线的自动化监控系统增强了现场级信息集成能力。现场总线可从现场设备大量丰富信息,能够好的满足工厂自动化及CIMS系统的信息集成要求。现场总线是数字化通信网络,它不单纯取代4-20mA信号,还可实现设备状态、故障、参数信息传送。系统除完成远程控制,还可完成远程参数化工作。(2)开放式、互操作性、互换性、可集成性。不同厂家产品只要使用同一总线标准,就具有互操作性、互换性,因此设备具有很好的可集成性。系统为开放式,允许其它厂商将自己专长的控制技术,如控制算法、工艺流程、配方等集成到通用系统中去,因此,市场上将有许多面向行业特点的监控系统。(3)系统性高、可维护性好。基于现场总线的自动化监控系统采用总线连接方式替代一对一的I/O连线,对于大规模I/O系统来说,减少了由接线点造成的不因素。同时,系统具有现场级设备的在线故障诊断、报警、记录功能,可完成现场设备的远程参数设定、修改等参数化工作,也增强了系统的可维护性。(4)节省成本:对大范围、大规模I/O的分布式系统来说,省去了大量的电缆、I/O模块及电缆敷设工程费用,降低了系统及工程成本。

数字智能现场装置是FCS系统的硬件支撑是基础,道理很简单,FCS系统执行的是自动控制装置与现场装置之间的双向数字通信现场总线信号制。如果现场装置不遵循统一的总线协议,即相关的通讯规约,不具备数字通信功能,那么所谓双向数字通信只是一句空话,也不能称之为现场总线控制系统。再一点,现场总线的一大特点就是要增加现场一级控制功能。如果现场装置不是多功能智能化的产品,那么现场总线控制系统的特点也就不存在了,所谓简化系统、方便设计、利于维护等优越性也是虚的。对于一个控制系统,无论是采用DCS或PLC还是采用现场总线,系统需要处理的信息量至少是一样多的。实际上,采用现场总线后,可以从现场得到多的信息。现场总线系统的信息量没有减少,甚至增加了,而传输信息的线缆却大大减少了。这就是FCS系统的一大优点。

6.PCBCS控制系统

除上述三大控制系统以外,近来出现一种控制系统称为PCBCS,在此只简单介绍一下该系统,不与以上三个系统比较。PCBCS是将经过加固的PC机硬件与控制软件相结合,实施通常由PLC、 DCS执行的控制功能,或者说将PLC的控制功能"封装在"软件内,运行在PC的环境中。PCBCS控制系统主要由以下三部分组成:PC机;I/O组件及其连接件;操作系统软件和应用软件。PC机将以往PLC、DCS控制系统中的操作站、控制站溶为一体,同时具备实施控制、通信及操作显示等多项功能。快速发展的计算机技术使PC机可提供一个真正开放的平台,使系统所有的功能集成于PC这个统一开放的平台上,以减少安装空间、节省电缆,将复杂的通信连接简单化,还可通过互联网Internet或企业内部网Intranet 得要的生产信息,实现生产过程优化。由以上三个组成部分就可以看出PCBCS系统的开放性是的,因此它现在的和未来的发展速度都将是非常快的,决不会象以往的PLC 、DCS控制系统那样因封闭性、专一性而造成长期发展滞后,而会随计算机技术、通信技术、I/O组件制造技术、现场总线技术及软件技术的发展与时俱进,提升。

7.系统比较

(1)DCS系统是个大系统,其闭环控制功能强。PLC系统适合中型及小型
系统,其逻辑控制功能强。FCS适合各种控制系统,但有数字智能化的现场装置为前提,才能显示其智能化的优势。
(2)DCS系统一次性投资较大,PLC系统投资相对要小。FCS系统要求一次仪表智能化程度高,一次仪表投资要大些。
(3)DCS系统是封闭式系统,各公司产品基本不兼容,事后扩容难度较大。

PLC系统可以通过网络扩充同型号PLC单元,而且它可以作为DCS、FCS系统的处理现场I/O。FCS系统是开放式系统,用户可以选择不同厂商、不同的各种设备连入现场总线,达到的系统集成。
(4) DCS、PLC系统的信息全都是二进制或模拟信号形成的,有D/A与A/D转换。FCS系统是全数字化,采用数字信号传递,就免去了D/A与A/D变换,高集成化,使精度可以从±0.5%提高到±0.1%。

(5) FCS系统可以将PID闭环控制功能装入变送器或执行器中,缩短了控制周期,目前可以从DCS的每秒2~5次,提高到FCS的每秒10~20次,从而改善调节性能。

(6) DCS、PLC可以控制和监视工艺全过程,对自身进行诊断、维护和组态。但是,由于其I/O信号采用传统的模拟量信号,因此,它无法在DCS工程师站上对现场仪表(含变送器、执行器等)进行远方诊断、维护和组态。FCS采用全数字化技术,数字智能现场装置发送多变量信息,而不仅仅是单变量信息,并且还具备检测信息差错的功能。FCS采用的是双向数字通信现场总线信号制。因此,它可以对现场装置(含变送器、执行机构等)进行远方诊断、维护和组态。FCS的这点优越性是DCS、PLC无法比拟的。

(7) FCS由于信息处理现场化,与DCS、PLC相比可以省去相当数量的隔离器、端子柜、I/O终端、I/O卡件、I/O文件及I/O柜,同时也节省了I/O装置及装置室的空间与占地面积。FCS可以减少大量电缆与敷设电缆用的桥架等,同时也节省了设计、安装和维护费用。但它是以数字智能现场装置为前提的。

目前的DCS与新型的PLC,由于多年的开发研究,在各自保留自身原有的特点外,又相互,形成新的系统,现在的DCS已不是当初的DCS,同样如此,新型的PLC也不是开发初期的PLC。我们能够说是DCS取代了PLC或者说是PLC取代了DCS,显然都是不合适的。目前PLC系统由于网络技术的发展,也可以组成大型的DCS系统。而DCS为适应市场需要,也在开发小型的DCS系统。FCS是由DCS以及PLC发展而来,它保留了DCS的特点,或者说FCS吸收了DCS多年开发研究以及现场实践的经验,当然也包括教训。随着FCS技术的发展,FCS在不远的将来是有可能占据控制系统的主流。

随着各种技术的不断发展,几个系统相互融合组成的控制系统网络。在DCS中可以利用PLC作为控制的底层,完成基本的控制任务。其实多台PLC也可以组成控制网络,从其构成形式及分散危险的方面理解,可以被称其为DCS控制系统。作为FCS系统也同样共存与其它系统当中使用,远距离数据采集和连接智能化就地设备利用FCS系统会使整个控制系统锦上添花。而PCBCS控制系统也正在悄悄兴起,从性能和技术支持来看也具有很强的发展势头。

8.结语

根据控制系统的特点及电厂改造的具体情况,改造机组增加脱硫、脱硝装置时,控制系统的设计选型应该考虑如下一些情况。从目前控制系统的实用观点来看,应该PLC控制系统。该系统造价远比DCS低,并且改造中的脱硫及脱硝系统一般控制点数在500点左右,适合选用PLC系统。另外系统中模拟量控制较少,开关量逻辑控制较多,所以选用PLC为控制系统能发挥其特长。FCS系统是比较的控制系统,随着一次智能化仪表的发展和普及,FCS将是未来控制系统的主流。由于目前现场条件的限制在改造机组中选用FCS系统还不能发挥其优势。当然如果现场要求控制系统,一次仪表大多采用智能化仪表,选用FCS控制系统是为理想的。该系统可以通过网络技术使数据能够方便地上传给主系统DCS,实现集中监视。在改造系统中也可以采用DCS系统,其控制系统的稳定是经过长期明的,主要是价格昂贵,由于DCS很强大的控制功能在改造系统中没有多少用武之地,造成资源浪费。目前小型DCS系统发展很快,除PLC系统外也可以考虑选用小型DCS系统。由于PCBCS系统刚刚起步,其性还要进一步验证,可能是未来控制系统的发展趋势。具体的选型设计当中还要根据用户的实际情况,综合各种因素选择针对改造机组及用户认可的控制系统


http://zhangqueena.b2b168.com

产品推荐